All faculty, staff, postdocs and graduate students are invited to attend. Join us for BBQ, soccer and volleyball!
Saturday, October 13, 2018
Brian Bachmann Pavilion
1600 Rock Prairie Road
College Station, TX 77845
StatLinks
Calendar
February 2019
Faculty Sponsored Seminar: Shanshan Zhao
February 18, 201911:30 AM / 12:30 PM Blocker Building (BLOC), Room 457 979-845-3141
SHANSHAN ZHAO 
Biostatistics and Computational Biology Branch
National Institute of Environmental Health Sciences
Statistical Methods of Multivariate Failure Time Data
ABSTRACT
Many biomedical studies follow participants for multiple correlated health outcomes. Modeling these outcomes simultaneously opens the possibility of understanding an individual’s susceptibility to multiple diseases throughout the lifespan. While statistical methods for univariate failure time data are well established, the corresponding standard analysis tools for multivariate failure time data have not yet been established. The main difficulty is that with multiple censored time-to-event outcomes, the joint likelihood is not uniquely defined due to uninformative data points concerning the local dependency between event times. This talk will focus on some recent development in this area, including a nonparametric and a semiparametric approach of estimating the joint survival function. These proposed methods have the ability to explore and estimate dependency between event times as well as to understand the relationship between dependency and risk factors. Simulation evaluations as well as an application to the Women’s Health Initiative’s hormone therapy trial will be presented.
Monday, 2/18/2019, 11:30 AM, BLOC 457
Departmental Colloquia: Kshitij Khare
February 22, 201911:30 AM / 12:30 PM Blocker Building (BLOC), Room 113 979-845-3141
KSHITIJ KHARE 
Department of Statistics
University of Florida
A Bayesian Approach for Joint Estimation of Multiple Networks
ABSTRACT
In this paper, we develop a novel Bayesian approach for joint estimation of multiple graphical models. This problem arises in many applications, such as understanding co-expression networks from high-dimensional Omics data obtained from different biological conditions or disease subtypes. We pursue a pseudo-likelihood based approach which provides robustness and computational efficiency. We illustrate the efficacy of our approach using simulated and real datasets.
This is joint work with George Michailidis and Peyman Jalali.
Friday, 2/22/2019, 11:30 AM, BLOC 113
Departmental Colloquia: Veronika Rockova
March 1, 201911:30 AM / 12:30 PM Blocker Building (BLOC,) Room 113 979-845-3141