1) \(y_t = g(x_t) + \epsilon_t \) \(\epsilon_t \sim N(0, \sigma^2) \) \(x_t \) has density \(f_x \).

We (falseely) fit the model \(y_t = \beta x_t + e_t \) \(\epsilon_t \sim N(0, \sigma^2) \) to no data.

(c) \(\hat{\beta} = \frac{\sum y_t x_t}{\sum x_t^2} \)

(vi) By the continuous mapping theorem we have

\[
\hat{\beta} = \frac{\frac{1}{T} \sum y_t x_t}{\frac{1}{T} \sum x_t^2} \rightarrow \mathbb{E}(y_t x_t) = \frac{\int g(x) x f(x) dx}{\int g(x) f(x) dx} = \beta_0.
\]

(vii) There are 2 ways to approach this problem.

Either consider the marginal distribution of \(y_t \) for both the correct model and the best fitting linear model or consider the joint distribution of \((y_t, x_t) \) for both the best fitting and correct model.

In the case of the marginal distributions the true density is:

\[
h(y) = \int \left[y - g(x) \right] f_x(x) dx.
\]

For the correct model it is:

\[
\hat{f}_p(y) = \int \left[y - \beta_0 x \right] f_x(x) dx.
\]
The KL-criterion is then $E_n \left[\log \frac{\hat{p}(y)}{n(y)} \right] = \phi \alpha$ at does not give an interesting explicit expression.

Let us, instead, consider the joint distributions.

The true joint distribution is

$$p(y|x) f_x(x) = \mathcal{N}(y - g(x),\sigma_x^2) f_x(x)$$

The best fitting distribution is

$$f_y|x(y) f_x(x) = \mathcal{N}(y - \beta_0 x) f_x(x).$$

Thus the KL-criterion is

$$E \left[\log \frac{\mathcal{N}(y - \beta x, \sigma_x^2) f_x(x)}{\mathcal{N}(y - g(x), \sigma^2) f_x(x)} \right]$$

$$= E \left\{ -\frac{1}{2 \sigma^2} (y - \beta x)^2 + \frac{1}{2 \sigma^2} (y - g(x))^2 \right\}$$

$$= -\frac{1}{2 \sigma^2} \int (\beta x - g(x))^2 \delta f(x) \, dx$$

[after some calculation and using mean $E(Y|X) = E(g(X)|X)$]

This has a rather nice form. It will always be negative (as theory tells us), but the better the approximation the closer it will be to zero.
2) Let us suppose that Y_t is a discrete r.v. and X_t are regressors which we know to influence Y_t. If we treat X_t as random then conditional on X_t we have

$E(Y_t | X_t) = e^{\beta X_t}$ and $\text{Var}(Y_t | X_t) = e^{2\beta X_t} \left[1 + \xi e^{\beta X_t} \right]$, where $\xi \geq 0$. The estimating equation

$\Theta(\beta) = \sum_t (Y_t - e^{\beta X_t}) X_t = 0$ is used to estimate β.

We denote this estimate as $\hat{\beta}$.

By the delta method we have

$$\sqrt{T}(\hat{\beta} - \beta) \xrightarrow{d} N(0, V_T).$$

(a) $V_T = A_T^{-1} B_T A_T^{-1}$, where

$A_T = \mathbb{E} \left\{ \frac{1}{T} \sum_t e^{\beta X_t} X_t^2 \right\} = \mathbb{E} \left\{ e^{\beta X_t} X_t^2 \right\}$

$B_T = \text{Var} \left\{ \frac{1}{T} \sum_t (Y_t - e^{\beta X_t}) X_t \right\}$

$$= \frac{1}{T} \sum_t \mathbb{E} \left\{ \text{Var}(Y_t - e^{\beta X_t} | X_t) X_t^2 \right\}$$

$$= \frac{1}{T} \sum_t \mathbb{E} \left\{ X_t^2 e^{\beta X_t} \left[1 + \frac{\xi}{T} e^{\beta X_t} \right] \right\}$$

$$= \mathbb{E} \left[X_t^2 e^{\beta X_t} \right] + \frac{\xi}{T} \mathbb{E} \left[X_t^2 e^{2\beta X_t} \right]$$

(ii) To derive explicit expressions for A_T and B_T when X_t are standard normal distribution, we use the
\[
\frac{1}{\sqrt{2\pi}} \int x e^{-\frac{1}{2} x^2} \, dx = \frac{e^{\sigma^2/2}}{\sqrt{\pi}} \int x e^{-\frac{1}{2} (x-\bar{x})^2} \, dx \\
= \frac{e^{\sigma^2/2}}{\sqrt{\pi}} \left[\frac{\sqrt{\pi} (x-\bar{x}) e^{-\frac{1}{2} (x-\bar{x})^2}}{\sqrt{\pi}} \right] + \frac{\sigma}{\sqrt{2\pi}} \int e^{-\frac{1}{2} (x-\bar{x})^2} \, dx \\
= \frac{e^{\sigma^2/2}}{\sqrt{\pi}} \left[\sigma + \sigma \right] = \sigma e^{\sigma^2/2}
\]

(1)

\[
\frac{1}{\sqrt{2\pi}} \int x^2 e^{-\frac{1}{2} x^2} \, dx = \\
e^{\sigma^2/2} \left[\frac{\sqrt{\pi} x e^{-\frac{1}{2} (x-\bar{x})^2}}{\sqrt{\pi}} \right] + \frac{2\sigma}{\sqrt{2\pi}} \int x e^{-\frac{1}{2} (x-\bar{x})^2} \, dx - \frac{\sigma^2}{\sqrt{\pi}} \int e^{-\frac{1}{2} (x-\bar{x})^2} \, dx \\
= e^{\sigma^2/2} \left[1 + \sigma^2 \right]
\]

(2)

Thus

\[
A_T = \int e^{B x_t} x_t e(x) \, dx = e^{B^2/2} (\beta + 1)
\]

(3)

(\text{iii}) \text{ Estimate } B_T \text{ with } \frac{1}{T} \sum_{t=1}^{T} \left(y_t - e^{B x_t} \right) x_t^2 \overset{\hat{\beta}}{=} B
\[\hat{B} = e^{\hat{B}^2 / 2} (1 + \hat{B}^4) + \varepsilon e^{(2\hat{B})^2 / 2} (1 + (2\hat{B})^2) \]

Now we can solve for \(\varepsilon \), to obtain an estimate of \(\varepsilon \).

There also exists graphical methods for estimating \(\varepsilon \) too.
2) we have the survival likelihood:

\[L_t(\theta) = \sum_i S_i \log f(T_i; \theta) + \sum_i (1-S_i) \log F(t_i; \theta). \]

(a) since the observations are not taking expectations give

\[\mathbb{E} \{ L_t(\theta) \} = \pi \mathbb{E} \{ \log f(T_i; \theta) \} + (1-\pi) \mathbb{E} \{ \log F(t_i; \theta) \} \]

since \(S_i \) and \((T_i, \xi_i) \) are independent.

Differentiating \(\mathbb{E} \{ \log f(T_i; \theta) \} \) with \(\theta \) it is easily seen that \(\frac{\partial}{\partial \theta} \mathbb{E} \{ \log f(T_i; \theta) \} = 0 \) at \(\theta = \theta_0 \).

We now consider the term \(\mathbb{E} \{ \log F(t_i; \theta) \} \) and show that (usually) the derivative will not equal zero at \(\theta = \theta_0 \).

First we need the density of \(Y_i \). Since \(Y_i = \min \{ T_i, C_i \} \) we see that

\[P[\min \{ T_i, C_i \} \leq y] = 1 - P[\min \{ T_i, C_i \} > y] \]

\[= 1 - F(y; \theta_0) G(y) \]

Thus the density of \(Y_i \) is

\[f(y; \theta_0) G(y) + F(y; \theta_0) g(y). \]

Using the above we have
\begin{equation}
E\left[\log F(y; \theta) \right] = \int [\log F(y; \theta)] [F(y; \theta_0) F(y) + F(y; \theta_0) g(y)] dy
\end{equation}

To check whether the above is maximum at \(\theta_0 \) we diff the above w.r.t \(\theta \) to give

\[
\frac{\partial}{\partial \theta} E\left[\log F(y; \theta) \right] = \int \frac{1}{F(y; \theta)} \frac{dF(y; \theta)}{d\theta} \left[F(y; \theta_0) g(y) + F(y; \theta_0) g(y) \right] dy
\]

At the true parameter \(\theta \) this gives

\[
= \int \frac{dF(y; \theta)}{d\theta} g(y) dy + \int \frac{dF(y; \theta)}{d\theta} F(y; \theta_0) dy.
\]

This term will not = 0 (in general).

\[
= 0 \quad \text{since} \quad \int g(y) dy = 1
\]

Actually \(\neq 0 \)! Yours truly got it wrong... we all make mistakes 😅

Thus we have that

\[
\frac{d}{d\theta} E_{\theta} [L_T(\theta)] = \pi \frac{d}{d\theta} E_{\theta} [\log f(y; \theta)]_{\theta=\theta_0} + (1-\pi) \frac{d}{d\theta} E_{\theta} [\log F(y; \theta)]_{\theta=\theta_0} = 0
\]

\[
\text{not necessarily} = 0.
\]

Since the derivative of expectation of the criterion is not zero at the true parameter \(\theta_0 \), the estimator \(\hat{\theta}_T \) is unlikely to consistently estimate \(\theta_0 \). It will be a biased (in probability) estimator.
Give my huge mistake, shirky that

$$\frac{d}{d\theta} \int \pi(y; \theta) g(y) \, dy = 0 \quad [\text{not quite sure what came over me}].$$

The derivation of the likelihood

$$E \left[-\frac{d^2 L}{d\theta^2} \right] = E \left[\left(\frac{d L}{d\theta} \right)^2 \right]$$

so under the assumption.

You should try and see where this derivation falls apart, when \((\ast) \) is not true!

So I made a huge mistake but it is good practice for you to understand where things work and do not work.
(ii) Now we consider the special case that
\[g(x) = f(x; \theta_0). \]
In this case the density \(g \)
\[\min(T, C) \] is
\[2 f(x; \theta_0) F(x; \theta_0). \]
Now by substituting this into the calculations in (i) it can be seen that
\[\frac{\partial}{\partial \theta} \log f(y_i; \theta) \bigg|_{\theta = \theta_0} = 0. \]
Thus in this special case the estimator will be consistent.

(iii) Take second derivatives of
\[\Pi \equiv \int \log f(t, \theta) \] + \((1-\Pi) \int \log f(y_i; \theta) \]

give,
\[\Pi \equiv \int \left\{ -\frac{1}{f(t, \theta)} \left(\frac{\partial f}{\partial \theta} \right)^2 + \frac{1}{f(t, \theta)} \frac{\partial^2 f}{\partial \theta^2} \right\} \]
\[+ (1-\Pi) \int \left\{ -\frac{1}{f(y_i, \theta)} \left(\frac{\partial f}{\partial \theta} \right)^2 + \frac{1}{f(y_i, \theta)} \frac{\partial^2 f}{\partial \theta^2} \right\} \]

Under the assumptions given in (iii)\n\[\Pi \equiv \int \left\{ -\frac{1}{f(y_i, \theta)} \left(\frac{\partial f}{\partial \theta} \right)^2 \right\} = 0. \]
Thus, \(\theta(x) = \mathcal{F}(x; \theta_0) \) we have

\[
\begin{align*}
\frac{\partial}{\partial \theta} \left[\frac{1}{\mathcal{F}(T; \theta)} \right] &+ (1-\pi) \mathbb{E} \left[\frac{1}{\mathcal{F}(Y_i; \theta)} \right] \\
= \mathbb{E} \left[\frac{1}{\mathcal{F}(T; \theta)} \left(\frac{\partial \mathcal{F}(T; \theta)}{\partial \theta} \right)^2 \right] + (1-\pi) \mathbb{E} \left[\frac{1}{\mathcal{F}(Y_i; \theta)} \left(\frac{\partial \mathcal{F}(Y_i; \theta)}{\partial \theta} \right)^2 \right] \\
= - \mathbb{E} \left[\frac{\partial}{\partial \theta} \left(\frac{\mathcal{F}(T; \theta) \log \mathcal{F}(T; \theta) + (1-\pi) \log \mathcal{F}(Y_i; \theta)}{\mathcal{F}(T; \theta)} \right) \right]^2.
\end{align*}
\]

Then, the limiting distribution of the estimator \(\hat{\theta} \) (based on the survival likelihood) is

\[\sqrt{T} (\hat{\theta} - \theta_0) \rightarrow N \left(0, I_1 \right),\]

where

\[I_1 = \mathbb{E} \left[\frac{1}{\mathcal{F}(T; \theta)} \left(\frac{\partial \mathcal{F}(T; \theta)}{\partial \theta} \right)^2 \right] + (1-\pi) \mathbb{E} \left[\frac{1}{\mathcal{F}(Y_i; \theta)} \left(\frac{\partial \mathcal{F}(Y_i; \theta)}{\partial \theta} \right)^2 \right].\]

(iv) An alternative method is to maximise the non-censored part of the density, which is

\[L_2(\theta) = \sum_i s_i \log \mathcal{F}(T_i; \theta).\]

The limiting distribution of the estimator \(\hat{\theta}_2 \) is

\[\sqrt{T} (\hat{\theta}_2 - \theta_0) \rightarrow N \left(0, I_2 \right),\]

where
\[I_2 = \prod \theta \left\{ \frac{1}{\hat{F}(T; \hat{\theta})} \left(\frac{\partial \hat{\theta}}{\partial \theta} \right)^2 \right\}. \]

We can easily see that \(I_1 > I_2 \), thus the limiting variance of \(\hat{\theta}_1 \) is smaller than \(\hat{\theta}_2 \). Hence in the special case that \(G(x) = \hat{F}(x; \theta) \), it makes sense to use the survival likelihood to estimate \(\theta_0 \).