When we use the z, the Standard Normal, curve, we are assuming, not only that the data, or at least the sample mean, follows a normal distribution, BUT ALSO the true variance of the data, σ^2, is known. This never happens in real life, so what can we do? We can estimate the true standard deviation, σ, with the sample standard deviation, s. But there is a problem: 1. we’re now estimating 2 things, AND 2. the sample sd, s, can underestimate as often as overestimate. To compensate, we use a t instead of a z.

The distribution of t is quite similar to the z, the Standard Normal. It is centered at zero, but instead of defining the spread by the standard deviation, σ, it is defined by the degrees of freedom or just df. For the one-sample case, the df of $t = n-1$, the sample size minus 1. [We lose one degree of freedom because now if we know \bar{x}, s, and $n-1$ of the observations, the last (n^{th}) observation is fixed.] As our sample size and hence the df increases, the t distribution gets taller and less spread out. This equates to s getting closer to the true value, σ, as we get more data. When $s=\sigma$, the t confidence interval will be wider than the z since we are unsure of the true the variability of the data. There are times when our estimate, s, is so much less than σ that even using the t doesn’t quite give us a wide enough interval, but this is rare. What happens when our interval is too narrower? Well, we may not cover the true mean!