Supplement to “Simultaneous Inference for High-dimensional Linear Models”

Xianyang Zhang\(^\ast\) and Guang Cheng\(^\dagger\)

\textit{Texas A\&M University and Purdue University}

February 22, 2016

This supplementary material provides proofs of the main results in the paper as well as some additional numerical results.

1 Technical details

We first present two lemmas that will be used in the rest proofs. Define \(\xi_{ij} = \Theta_j^T \tilde{X}_i \epsilon_i\). Denote by \(c, c', C, C', C_i\) be some generic constants which can be different from line to line.

Lemma 1.1. Under Assumptions 2.1-2.3, we have for any \(G \subseteq \{1, 2, \ldots, p\}\),

\[
\sup_{x \in \mathbb{R}} \left| P \left(\max_{j \in G} \sum_{i=1}^{n} \frac{\xi_{ij}}{\sqrt{n}} \leq x \right) - P \left(\max_{j \in G} \sum_{i=1}^{n} \frac{z_{ij}}{\sqrt{n}} \leq x \right) \right| \lesssim n^{-c'}, \quad c' > 0,
\]

where \(\{z_i = (z_{i1}, \ldots, z_{ip})'\}\) is a sequence of mean zero independent Gaussian vector with \(\mathbb{E}z_i z_i' = \Theta_j^T \Sigma \Theta_j \sigma_\epsilon^2\).

\(^\ast\)Assistant Professor, Department of Statistics, Texas A&M University, College Station, TX 77843. E-mail: zhangxiany@stat.tamu.edu.

\(^\dagger\)Associate Professor, Department of Statistics, Purdue University, West Lafayette, IN 47906. E-mail: chengg@purdue.edu. Tel: +1 (765) 496-9549. Fax: +1 (765) 494-0558. Research Sponsored by NSF CAREER Award DMS-1151692, DMS-1418042, Simons Fellowship in Mathematics, Office of Naval Research (ONR N00014-15-1-2331) and a grant from Indiana Clinical and Translational Sciences Institute. Guang Cheng was on sabbatical at Princeton while part of this work was carried out; he would like to thank the Princeton ORFE department for its hospitality and support.
Proof of Lemma 1.1. We apply Corollary 2.1 of Chernozhukov et al. (2013) to the sequence \(\{\xi_{ij}\} \) by verifying its Condition (E.1). For the sake of clarity, we state the condition below, i.e.

\[
c_0 \leq \mathbb{E} \xi_{ij}^2 \leq C_0, \quad \max_{k=1,2} \mathbb{E} |\xi_{ij}|^{2+k}/B^k + \mathbb{E} \exp(|\xi_{ij}|/B) \leq 4,
\]

uniformly over \(j \), where \(c_0, C_0 > 0 \), and \(B \) is some large enough constant. In what follows, we consider two cases for \(X \): (i) \(X \) has i.i.d. sub-Gaussian rows; (ii) \(X \) is strongly bounded.

(i) By Assumption 2.2, \(\mathbb{E}(\Theta_j^T \tilde{X}_j)^2 = \Theta_j^T \Sigma \Theta_j = \theta_{jj} := 1/\tau_j^2 \), and \(1/c < \Lambda_{\min}^2 \leq \tau_j^2 \leq \Sigma_{jj} = C \), for some constants \(c, C > 0 \). Recall that \(\Lambda_{\min}^2 \) is the minimal eigenvalue of \(\Sigma \). Thus we have \(c_1 \sigma_{\tau}^2 \leq \mathbb{E} \xi_{ij}^2 \leq C_1 \sigma_{\tau}^2 \). By the independence between \(\{\tilde{X}_i\} \) and \(\{\epsilon_i\} \), we have for large enough \(C \) and uniformly for all \(j \),

\[
\mathbb{E} \exp(|\xi_{ij}|/C) = 1 + \sum_{k=1}^{+\infty} \frac{\mathbb{E} |\xi_{ij}|^k}{C^k k!} = 1 + \sum_{k=1}^{+\infty} \frac{\mathbb{E} |\Theta_j^T \tilde{X}_j|^k \mathbb{E} |\epsilon_i|^k}{C^k k!} \\
\leq 1 + \sum_{k=1}^{+\infty} \frac{k^k}{(C''k)^k} \leq 1 + \sum_{k=1}^{+\infty} (e/C'')^k < \infty,
\]

where we have used the fact that \(k! \geq (k/e)^k \), \(||\Theta_j||_2 \leq \Lambda_{\min}^{-1} = O(1) \) (because \(||\Theta_j||_2^2 \Lambda_{\min}^2 \leq c \)) and \(\mathbb{E} |X|^k \leq (C'')^k k^{k/2} \) with \(C'' \) being some positive constant for sub-Gaussian variable \(X \). Thus we have \(\max_{k=1,2} \mathbb{E} |\xi_{ij}|^{2+k}/B^k + \mathbb{E} \exp(|\xi_{ij}|/B) \leq 4 \) uniformly for some large enough constant \(B \).

(ii) In the strongly bounded case, using the fact that \(||\Theta_j||_2^2 \leq \Lambda_{\min}^{-2} = O(1) \) and \(||\Theta_j||_1 \leq \sqrt{s_j} ||\Theta_j||_2 \), we have \(|\Theta_j^T \tilde{X}_i| \leq ||\Theta_j||_1 ||\tilde{X}_i||_\infty \leq K_n \sqrt{s_j} ||\Theta_j||_2 \). It is straightforward to verify that \(\max_{k=1,2} \mathbb{E} |\xi_{ij}|^{2+k}/B^k + \mathbb{E} \exp(|\xi_{ij}|/B_n) \leq 4 \) uniformly with some \(B_n \cong K_n \max_j \sqrt{s_j} \) and \(B_n^2 (\log(pn))^7/n \leq C_2 n^{-c_2} \) under part (ii) of Assumption 2.3.

\(\diamond \)

Remark 1.1. The conclusion in Lemma 1.1 still holds if we assume that (i) \(\max_{i,j} |X_{ij}| \leq K_n \) with \(\max_{1 \leq j \leq p} s_j^2 K_n^4 (\log(pn))^7/n \leq C_1 n^{-c_1} \) for some constants \(c_1, C_1 > 0 \); and (ii) \(\{\epsilon_i\} \) are i.i.d with \(\mathbb{E} |\epsilon_i|^4 < \infty \) and \(c' < a_{\epsilon}^2 \) for \(c' > 0 \).

Next we quantify the effect by replacing \(\xi_i \) with \(\hat{\xi}_i \).

2
Lemma 1.2. Suppose Assumptions 2.1-2.3 hold. Assume \(\max_j K_0^2 s_j^2 (\log(p))^3 (\log(n))^2 / n = o(1) \).

Recall that \(K_0 = 1 \) in the sub-Gaussian case and \(K_0 = K_n \) in the strongly bounded case. Then with \(\lambda_j \asymp K_0 \sqrt{\log(p)/n} \) uniformly for \(j \), there exist \(\zeta_1, \zeta_2 > 0 \) such that

\[
P \left(\max_{1 \leq j \leq p} \left| \sum_{i=1}^n \frac{\hat{\xi}_{ij}}{\sqrt{n}} - \sum_{i=1}^n \frac{\xi_{ij}}{\sqrt{n}} \right| \geq \zeta_1 \right) < \zeta_2,
\]

where \(\zeta_1 \sqrt{1 \log(p) / \zeta_1} = o(1) \) and \(\zeta_2 = o(1) \).

Proof of Lemma 1.2. Let \(\tilde{K}_0 = \log(np) \log(n) \) in the sub-Gaussian case and \(\tilde{K}_0 = K_n \log(n) \) in the strongly bounded case. Using Lemma A.1 in Chernozhukov et al. (2013), we deduce that

\[
\mathbb{E} \left\{ \max_{1 \leq j \leq p} \left| \sum_{i=1}^n X_{ij} \epsilon_i / n \right| \right\} \lesssim \sigma_\epsilon \sqrt{\max_j \Sigma_{j,j} \sqrt{\log(p)/n} + \sqrt{\mathbb{E} \max_{i,j} |X_{ij} \epsilon_i|^2 \log(p)/n}}
\]

\[
\lesssim \sqrt{\log(p)/n} + \sqrt{\mathbb{E} \max_{i,j} X_{ij}^2 \log(p)/n}
\]

\[
\lesssim \sqrt{\log(p)/n + \tilde{K}_0 \log(p)/n},
\]

where we have used the fact that \(\sqrt{\mathbb{E} \max_i \epsilon_i^2} \lesssim \log(n) \max_{1 \leq i \leq n} ||\epsilon_i||_{\psi_1} \lesssim \log n \) with \(\psi_1(x) = \exp(x) - 1 \) and \(|| \cdot ||_{\psi_1} \) being the corresponding Orlicz norm, and similar result for \(\sqrt{\mathbb{E} \max_{i,j} X_{i,j}^2} \) (see Lemma 2.2.2 in van der Vaart and Wellner 1996). Because \(||\hat{\Theta}_j - \Theta_j||_1 = O_P(K_0 s_j \sqrt{\log(p)/n}) \) uniformly for \(j \), we obtain,

\[
\left| \sum_{i=1}^n \frac{\hat{\xi}_{ij}}{\sqrt{n}} - \sum_{i=1}^n \frac{\xi_{ij}}{\sqrt{n}} \right| = \left| \left(\hat{\Theta}_j^T - \Theta_j^T \right) \sum_{i=1}^n \hat{X}_{i} \epsilon_i / \sqrt{n} \right| \leq ||\hat{\Theta}_j - \Theta_j||_1 \left| \sum_{i=1}^n \hat{X}_{i} \epsilon_i / \sqrt{n} \right|_\infty
\]

\[
= O_P \left(K_0 s_j \sqrt{\log(p)/n} \left| \sum_{i=1}^n \hat{X}_{i} \epsilon_i / \sqrt{n} \right|_\infty \right)
\]

\[
= O_P \left(K_0 s_j \log(p)/\sqrt{n} + \sqrt{n} K_0 \tilde{K}_0 s_j (\log(p)/n)^{3/2} \right)
\]

\[
\leq O_P \left(\max_j s_j K_0 \log(p)/\sqrt{n} \right),
\]

uniformly for all \(j \). Choosing \(\zeta_1 \) such that \(\max_j K_0 s_j \log(p)/(\sqrt{n} \zeta_1) = o(1) \) and \(\zeta_1 \sqrt{1 \log(p) / \zeta_1} = \ldots \)
\(o(1) \) (e.g. \(\zeta_1^2 = O(\max_j K_0 s_j \sqrt{\log(p)/n}) \)), we deduce that

\[
P \left(\max_{1 \leq j \leq p} \left| \frac{\sum_{i=1}^n \hat{\xi}_{ij}}{\sqrt{n}} - \sum_{i=1}^n \frac{\xi_{ij}}{\sqrt{n}} \right| \geq \zeta_1 \right) < \zeta_2, \quad \zeta_2 = o(1).
\]

\(\Box \)

Remark 1.2. With a more delicate analysis, one can specify the order of \(\zeta_2 \) in Lemma 1.2; see e.g., Theorem 6.1 and Lemma 6.2 of Bühlmann and van de Geer (2011).

Proof of Theorem 2.2. Without loss of generality, we set \(G = \{1, 2, \ldots, p\} \). Define

\[
T_G = \max_{j \in G} \sqrt{n}(\hat{\beta}_j - \beta^0_j), \quad T_{0,G} = \max_{j \in G} \sum_{i=1}^n \frac{\xi_{ij}}{\sqrt{n}}.
\]

Let \(\pi(v) = C_2 v^{1/3} (1 \vee \log(p/v))^{2/3} \) with \(C_2 > 0 \), and

\[
\Gamma = \max_{1 \leq j, k \leq p} |\hat{\sigma}_j^2 \hat{\Theta}_j^T \hat{\Sigma} \hat{\Theta}_k - \sigma_j^2 \Theta_j^T \Sigma \Theta_k|, \quad \hat{\Sigma} = X^T X / n.
\]

Notice that

\[
|T_G - T_{0,G}| \leq \max_{1 \leq j \leq p} \left| \frac{\sum_{i=1}^n \hat{\xi}_{ij}}{\sqrt{n}} - \sum_{i=1}^n \frac{\xi_{ij}}{\sqrt{n}} \right| + \|\Delta\|_\infty.
\]

By similar arguments in the proof of Theorem 2.4 of van de Geer et al. (2014) and the results in Theorem 2.1, we have

\[
\|\Delta\|_\infty \leq \|\hat{\beta} - \beta^0\|_1 \max_j \sqrt{n} \lambda_j / \hat{\tau}_j^2 = O_P(K_0 \sqrt{\log(p)} \|\hat{\beta} - \beta^0\|_1) = O_P(K_0^2 s_0 \log(p) / \sqrt{n}),
\]

where we use the fact that \(\max_j \lambda_j / \hat{\tau}_j^2 = O_P(K_0 \sqrt{\log(p)/n}) \) and \(\|\hat{\beta} - \beta^0\|_1 = O_P(s_0 \lambda) \) with \(\lambda = O(K_0 \sqrt{\log(p)/n}) \). Thus by Lemma 1.2 and the assumption that \(K_0^4 s_0^2 (\log(p))^3 / n = o(1) \), we have

\[
P(|T_G - T_{0,G}| > \zeta_1) < \zeta_2,
\]

for \(\zeta_1 \sqrt{1 \vee \log(p/\zeta_1)} = o(1) \) and \(\zeta_2 = o(1) \).

Let \(c_{z,G}(\alpha) = \inf \{t \in \mathbb{R} : P(\max_{j \in G} \sum_{i=1}^n z_{ij} / \sqrt{n} \leq t) \geq 1 - \alpha \} \), where the sequence \(\{z_{ij}\} \) is
defined in Lemma 1.1. Following the arguments in the proof of Lemma 3.2 in Chernozhukov et al. (2013), we have

\[P(c_G(\alpha) \leq c_{z,G}(\alpha + \pi(v))) \geq 1 - P(\Gamma > v), \quad (2) \]

\[P(c_{z,G}(\alpha) \leq c_G(\alpha + \pi(v))) \geq 1 - P(\Gamma > v). \quad (3) \]

By Lemma 1.1, (2) and (3), we have for every \(v > 0, \)

\[
\sup_{\alpha \in (0,1)} |P(T_{0,G} > c_G(\alpha)) - \alpha| \lesssim \sup_{\alpha \in (0,1)} \left| P \left(\max_{j \in G} \frac{\sum_{i=1}^{n} z_{ij}/\sqrt{n}}{c_G(\alpha)} > c_G(\alpha) \right) - \alpha \right| + n^{-c'} \\
\lesssim \pi(v) + P(\Gamma > v) + n^{-c'}.
\]

Moreover, by the arguments in the proof of Theorem 3.2 in Chernozhukov et al. (2013), we have

\[
\sup_{\alpha \in (0,1)} |P(T_G > c_G(\alpha)) - \alpha| \lesssim \pi(v) + P(\Gamma > v) + n^{-c'} + \zeta_1 \sqrt{1 + \log(p/\zeta_1)} + \zeta_2.
\]

By Lemma 5.3 and Lemma 5.4 of van de Geer et al. (2014), we have

\[
\max_{1 \leq j, k \leq p} |\hat{\Theta}_j^T \hat{\Sigma} \hat{\Theta}_k - \Theta_j^T \Sigma \Theta_k| = O_P(\max_j \lambda_j \sqrt{s_j}).
\]

Since \(|\Theta_j^T \Sigma \Theta_k| \leq 1/(\tau_j \tau_k) = O(1)\) uniformly for \(1 \leq j, k \leq p,\) we have

\[
\Gamma = O_P \left(|\hat{\sigma}_\epsilon^2 - \sigma_\epsilon^2| + \max_j \lambda_j \sqrt{s_j} \right).
\]

Under Assumption 2.4, choosing \(v = 1/(\alpha_n (\log(p))^2), \) we deduce that

\[
\sup_{\alpha \in (0,1)} \left| P(\max_{1 \leq j, k \leq p} \sqrt{n}(\hat{\beta}_j - \beta_j^0) > c_G(\alpha)) - \alpha \right| = o(1),
\]

which completes the proof. \(\diamond \)
Proof of Theorem 2.3. From the arguments in the proof of Theorem 2.2, we have

$$\Gamma = \max_{1 \leq j, k \leq p} |\hat{\sigma}_j^2 \hat{\Theta}_j^T \hat{\Theta}_k - \sigma_j^2 \Theta_j^T \Theta_k| = O_P \left(|\hat{\sigma}_j^2 - \sigma_j^2| + \max_j \lambda_j \sqrt{s_j} \right),$$

which implies that \(\max_{1 \leq j \leq p} |\hat{\omega}_{jj} - \omega_{jj}| = O_P \left(|\hat{\sigma}_j^2 - \sigma_j^2| + \max_j \lambda_j \sqrt{s_j} \right) \) with \(\omega_{jj} = \sigma_j^2 \theta_{jj} \). We then have

$$P(\omega_{jj}/2 < \hat{\omega}_{jj} < 2\omega_{jj} \text{ for all } 1 \leq j \leq p) \to 1. \quad (4)$$

The fact that \(1/c < \Lambda_j^2 \leq \tau_j^2 = 1/\theta_{jj} \leq \Sigma_{jj} = C \) implies that \(\omega_{jj} \) is uniformly bounded away from zero and infinity.

Define \(\bar{T}_G = \max_{j \in G} \sqrt{n}(\hat{\beta}_j - \beta_j^0)/\sqrt{\omega_{jj}} \) and \(\bar{T}_{0,G} = \max_{j \in G} \sum_{i=1}^n \xi_{ij}/\sqrt{n\omega_{jj}} \). Denote by \(\Delta = (\Delta_1, \ldots, \Delta_p)^T \) and \(\bar{\Delta} = (\bar{\Delta}_1, \ldots, \bar{\Delta}_p)^T \) with \(\Delta_j = \Delta_j/\sqrt{\omega_{jj}} \). Then we have

\[
|\bar{T}_G - \bar{T}_{0,G}| \\
\leq \max_{1 \leq j \leq p} \left[\sum_{i=1}^n \frac{\hat{\xi}_{ij}}{\sqrt{n\hat{\omega}_{jj}}} - \sum_{i=1}^n \frac{\xi_{ij}}{\sqrt{n\omega_{jj}}} \right] + ||\bar{\Delta}||_\infty \\
\leq \max_{1 \leq j \leq p} \left[\sum_{i=1}^n \frac{\hat{\xi}_{ij}}{\sqrt{n\hat{\omega}_{jj}}} - \sum_{i=1}^n \frac{\hat{\xi}_{ij}}{\sqrt{n\omega_{jj}}} \right] + \max_{1 \leq j \leq p} \left[\sum_{i=1}^n \frac{\hat{\xi}_{ij}}{\sqrt{n\hat{\omega}_{jj}}} - \sum_{i=1}^n \frac{\xi_{ij}}{\sqrt{n\omega_{jj}}} \right] + ||\bar{\Delta}||_\infty \\
\leq C' \max_{1 \leq j \leq p} \left[\sum_{i=1}^n \frac{\hat{\xi}_{ij}}{\sqrt{n}} \max_{1 \leq j \leq p} \left| \frac{\omega_{jj}/\hat{\omega}_{jj} - 1}{\sqrt{\omega_{jj}/\hat{\omega}_{jj}}} \right| \right] + C'' \max_{1 \leq j \leq p} \left[\sum_{i=1}^n (\hat{\xi}_{ij} - \xi_{ij})/\sqrt{n} \right] + ||\bar{\Delta}||_\infty, \\
= I_1 + I_2 + I_3,
\]

where \(C', C'' > 0 \).
On the event $\omega_{jj}/2 < \hat{\omega}_{jj} < 2\omega_{jj}$ for all $1 \leq j \leq p$,

$$
\max_{1 \leq j \leq p} \left| \sqrt{\omega_{jj}/\hat{\omega}_{jj}} - 1 \right| \leq \max_{1 \leq j \leq p} \left| \sqrt{\omega_{jj} - \sqrt{\omega_{jj}} \max_{1 \leq j \leq p} 2/\omega_{jj}} \right|
$$

$$
\leq \max_{1 \leq j \leq p} \frac{\omega_{jj} - \hat{\omega}_{jj}}{\sqrt{\omega_{jj} + \sqrt{\omega_{jj}}}} \max_{1 \leq j \leq p} \sqrt{2/\omega_{jj}} \leq \max_{1 \leq j \leq p} \frac{\omega_{jj} - \hat{\omega}_{jj}}{\max_{1 \leq j \leq p} 1/\omega_{jj}} = O_P \left(|\hat{\sigma}_\epsilon^2 - \sigma_\epsilon^2| + \max_j \lambda_j \sqrt{s_j} \right).
$$

On the other hand,

$$
\max_{1 \leq j \leq p} \left| \frac{\hat{\xi}_{ij}/\sqrt{n}}{\sqrt{\xi_{ij} - \xi_{ij}}/\sqrt{n}} + \left| \xi_{ij}/\sqrt{n} \right| \right| \leq O_P \left(\sqrt{\log(p)} \log(n) \right) = O_P \left(\sqrt{\log p} \right),
$$

where $\bar{K}_0 = \log(np) \log(n)$ in the sub-Gaussian case and $\bar{K}_0 = K_n \log(n)$ in the strongly bounded case. Therefore, on the above event, $I_1 \leq O_P \left(\sqrt{\log(p)} |\hat{\sigma}_\epsilon^2 - \sigma_\epsilon^2| + \sqrt{\log(p)} \max_j \lambda_j \sqrt{s_j} \right)$. Under Assumption 2.4, we can find ζ'_1 such that $P(I_1 > \zeta'_1) = o(1)$ and $\zeta'_1 \sqrt{1 \vee \log(p/\zeta'_1)} = o(1)$. Using the fact that $||\Delta||_\infty \leq O_P \left(K_0^2 s_0 \log(p)/\sqrt{n} \right)$, we can prove the same result for $||\bar{\Delta}||_\infty$ conditional on the event \{\(\omega_{jj}/2 < \hat{\omega}_{jj} < 2\omega_{jj}\) for all $1 \leq j \leq p$\}. Thus by Lemma 1.2 and (4), we have

$$
P(|\bar{T}_G - \tilde{T}_{0,G}| > \zeta_1) \leq P(I_1 + I_2 + I_3 > \zeta_1) < \zeta_2,
$$

for $\zeta_1 \sqrt{1 \vee \log(p/\zeta_1)} = o(1)$ and $\zeta_2 = o(1)$.

Let $\Gamma = \max_{1 \leq j, k \leq p} |\hat{\sigma}_\epsilon^2 \hat{\Theta}_j^T \hat{\Theta}_k / \sqrt{\hat{\omega}_{jj} \hat{\omega}_{kk}} - \sigma_\epsilon^2 \Theta_j^T \Sigma \Theta_k / \sqrt{\omega_{jj} \omega_{kk}}|$. Note that

$$
|\sqrt{\omega_{jj} \omega_{kk}} - \sqrt{\hat{\omega}_{jj} \hat{\omega}_{kk}}| = \frac{|\omega_{jj} \omega_{kk} - \hat{\omega}_{jj} \hat{\omega}_{kk}|}{\sqrt{\omega_{jj} \omega_{kk}} + \sqrt{\hat{\omega}_{jj} \hat{\omega}_{kk}}}.
$$
On the event \(\omega_{jj}/2 < \tilde{\omega}_{jj} < 2\omega_{jj} \) for all \(1 \leq j \leq p \), we have

\[
\frac{|\omega_{jj}\omega_{kk} - \tilde{\omega}_{jj}\tilde{\omega}_{kk}|}{\sqrt{\omega_{jj}\omega_{kk}} + \sqrt{\omega_{jj}\omega_{kk}}} \leq \frac{|\omega_{jj}\omega_{kk} - \tilde{\omega}_{jj}\tilde{\omega}_{kk}|}{\sqrt{\omega_{jj}\omega_{kk}} + \sqrt{\omega_{jj}\omega_{kk}}/4} \leq (2/3)|\omega_{jj}\omega_{kk} - \tilde{\omega}_{jj}\tilde{\omega}_{kk}| \max_{1 \leq j \leq p} 1/\omega_{jj},
\]

which implies that

\[
\max_{1 \leq j, k \leq p} \left| \sqrt{\omega_{jj}\omega_{kk}}/\omega_{jj}\tilde{\omega}_{kk} - 1 \right| \leq \max_{1 \leq j, k \leq p} \left| \sqrt{\omega_{jj}\omega_{kk}} - \sqrt{\tilde{\omega}_{jj}\tilde{\omega}_{kk}} \right| \max_{1 \leq j \leq p} 2/\omega_{jj} \\
\leq (4/3) \max_{1 \leq j, k \leq p} \left| \omega_{jj}\omega_{kk} - \tilde{\omega}_{jj}\tilde{\omega}_{kk} \right| \max_{1 \leq j \leq p} 1/\omega_{jj} \\
= O_P \left(|\tilde{\sigma}_j^2 - \sigma_j^2| + \max_j \lambda_j \sqrt{s_j} \right).
\]

Using similar arguments above, we can show that \(P(\bar{T} > v) = o(1) \) for \(v = 1/(\alpha_n(\log(p))^2) \). The rest of the proofs is similar to those in the proof of Theorem 2.2. We skip the details.

\[\Box\]

Proof of Theorem 2.4. Define \(\bar{T}_G = \max_{j \in G} |\sqrt{n}(\hat{\beta}_j - \beta^0_j)/\sqrt{\tilde{\omega}_{jj}}| \) and \(\bar{T}_{0,G} = \max_{j \in G} \sum_{i=1}^n |\xi_{ij}/\sqrt{\tilde{\omega}_{jj}}| \). Under the assumptions in Theorem 2.3, we can show that \(P(|\bar{T}_G - \bar{T}_{0,G}| > \zeta_1) < \zeta_2 \) for \(\zeta_1 \sqrt{1 \vee \log(p)/\zeta_1} = o(1) \) and \(\zeta_2 = o(1) \). In another word, the distribution of \(\max_{j \in G} |\sqrt{n}(\hat{\beta}_j - \beta^0_j)/\sqrt{\tilde{\omega}_{jj}}| \) can be approximated by \(\max_{j \in G} |Z_j| \) with \(Z = (Z_1, \ldots, Z_p) \sim \mathcal{N}(0, \bar{\Theta}) \). Under Assumption 2.5, by Lemma 6 of Cai et al. (2014), we have for any \(x \in \mathbb{R} \) and as \(|G| \to +\infty \),

\[
P \left(\max_{j \in G} |Z_i|^2 - 2 \log(|G|) + \log \log(|G|) \leq x \right) \rightarrow F(x) := \exp \left\{ -\frac{1}{\sqrt{\pi}} \exp \left(-\frac{x}{2} \right) \right\}.
\]

It implies that

\[
P \left(\max_{j \in G} n|\hat{\beta}_j - \beta^0_j|^2/\tilde{\omega}_{jj} \leq 2 \log(|G|) - \log \log(|G|)/2 \right) \rightarrow 1. \quad (5)
\]

The bootstrap consistency result implies that

\[
|(\bar{c}_G^*(\alpha))^2 - 2 \log(|G|) + \log \log(|G|) - q_\alpha| = o_P(1), \quad (6)
\]

where \(q_\alpha \) is the 100(1 - \alpha)th quantile of \(F(x) \). Consider any \(j^* \in G \) such that \(|\tilde{\beta}_{j^*} - \beta^0_{j^*}|/\sqrt{\tilde{\omega}_{j^*j^*}} >
(\sqrt{2} + \varepsilon_0)\sqrt{(\log |G|)/n}. Using the inequality $2a_1a_2 \leq \delta^{-1}a_1^2 + \delta a_2^2$ for any $\delta > 0$, we have

$$n|\tilde{\beta}_j - \beta_j^0|^2/\hat{\omega}_{jj} \leq (1 + \delta^{-1})n|\tilde{\beta}_j - \beta_j^0|^2/\hat{\omega}_{jj} + (1 + \delta)n|\tilde{\beta}_j - \beta_j^0|^2/\hat{\omega}_{jj},$$

(7)

where $n|\tilde{\beta}_j - \beta_j^0|^2/\hat{\omega}_{jj} = o_p(\log |G|)$ as j^* is fixed and $|G|$ grows. From the proof of Theorem 2.3, we know the difference between $n|\tilde{\beta}_j - \beta_j^0|^2/\hat{\omega}_{jj}$ and $n|\beta_j^* - \beta_j^0|^2/\hat{\omega}_{jj}$ is asymptotically negligible. Thus by (7) and the fact that $\beta^0 \in \mathcal{U}_G(\sqrt{2} + \varepsilon_0)$, we have,

$$\max_{j \in G} n|\tilde{\beta}_j - \beta_j^0|^2/\hat{\omega}_{jj} \geq \frac{1}{1 + \delta} \left\{ (\sqrt{2} + \varepsilon_0)^2(\log |G|) - o_p(\log |G|) \right\}. \quad (8)$$

The conclusion thus follows from (8) and (6) provided that δ is small enough.

Proof of Proposition 3.1. Similar to the proof of Theorem 2.4, the distribution of $\max_{1 \leq j \leq p} \sqrt{n} |\tilde{\beta}_j - \beta_{0j}|/\sqrt{\hat{\omega}_{jj}}$ can be approximated by $\max_{1 \leq j \leq p} |Z_j|$ with $Z = (Z_1, \ldots, Z_p) \sim N(0, \tilde{\Theta})$. Under Assumption 2.5, by Lemma 6 of Cai et al. (2014), we have for any $x \in \mathbb{R}$ and as $p \to +\infty$,

$$P \left(\max_{1 \leq i \leq p} |Z_i|^2 - 2 \log(p) + \log \log(p) \leq x \right) \to \exp \left\{ -\frac{1}{\sqrt{\pi}} \exp \left(-\frac{x}{2} \right) \right\}.$$

It implies that

$$P \left(\max_{j \in S_0} n|\tilde{\beta}_j|^2/\hat{\omega}_{jj} \leq 2 \log(p) - \log \log(p)/2 \right) \to 1. \quad (9)$$

On the other hand, we note that

$$\min_{j \in S_0} n|\beta_j^0|^2/\hat{\omega}_{jj} \leq 2 \max_{j \in S_0} n|\tilde{\beta}_j - \beta_j^0|^2/\hat{\omega}_{jj} + 2 \min_{j \in S_0} n|\tilde{\beta}_j|^2/\hat{\omega}_{jj}$$

Because the difference between $\min_{j \in S_0} n|\beta_j^0|^2/\hat{\omega}_{jj}$ and $\min_{j \in S_0} n|\beta_j^0|^2/\hat{\omega}_{jj}$ is asymptotically negligible, and $P(2 \max_{j \in S_0} n|\tilde{\beta}_j - \beta_j^0|^2/\hat{\omega}_{jj} \leq 4 \log(p) - \log \log(p)) \to 1$, we obtain

$$P \left(\min_{j \in S_0} n|\tilde{\beta}_j|^2/\hat{\omega}_{jj} > 2 \log p \right)$$

$$\geq P \left(2 \min_{j \in S_0} n|\tilde{\beta}_j|^2/\hat{\omega}_{jj} + 4 \log(p) - \log \log(p) > 8 \log(p) \right) \to 1. \quad (10)$$
Hence, (16) follows from (9) and (10).

We next prove the optimality of \(\tau^* = 2 \), i.e., (17). For large enough \(p \), we can choose a set \(G^* \) such that \(\beta_j = 0 \) for \(j \in G^* \), and \(|G^*| = |p^{T_2}| \) with \(\tau/2 < \tau_2 < 1 \). Following the above arguments, we know that the distribution of \(\max_{j \in G^*} \sqrt{n} |\hat{\beta}_j - \beta^0_j|/\sqrt{\omega_{jj}} \) can be approximated by \(\max_{j \in G^*} |Z_j| \) with \(Z = (Z_1, \ldots, Z_p) \sim^d N(0, \tilde{\Theta}) \). Then we have

\[
P \left(\max_{j \in G^*} \frac{\sqrt{n} |\hat{\beta}_j|^2}{\omega_{jj}} \geq c \log(p) \right) \rightarrow 1,
\]

where \(\tau < c < 2\tau_2 < 2 \). The conclusion thus follows immediately.

\(\diamond \)

Proof of Theorem 4.1. For simplicity, we only prove the result for the one-sided case (the arguments below can be easily modified for the two-sided case). Define \(T_G = \max_{j \in G} \sqrt{n} (\hat{\beta}_j - \beta_0) \) and \(T_{0,G} = \max_{j \in G} \sum_{i=1}^{n} \xi_{ij}/\sqrt{n} \). Let \(\tilde{c}_G(\alpha) \) be the bootstrap critical value for the one-sided test at level \(\alpha \).

We first show that there exist \(\zeta_1, \zeta_2 > 0 \) such that

\[
P (|T_G - T_{0,G}| \geq \zeta_1) < \zeta_2,
\]

where \(\zeta_1 \sqrt{1 + \log(p/\zeta_1)} = o(1) \) and \(\zeta_2 = o(1) \). Notice that

\[
|T_G - T_{0,G}| \leq \max_{j \in G} \sqrt{n} |(\Theta_j^T - \hat{\Theta}_j^T)E_n \hat{\lambda}_j| + ||\Delta||_{\infty} + \sqrt{n} ||\hat{\Theta} R||.
\]

Under the Lipschitz continuity in Assumption 4.1, we have

\[
\hat{\Theta}_j^T E_n \hat{\lambda}_j = \hat{\Theta}_j^T E_n \lambda_j + \hat{\Theta}_j^T E_n \hat{\lambda}_j (\hat{\beta} - \beta_0) + R_j,
\]

where \(R_j = \hat{\Theta}_j^T R \leq \max_i |\hat{\Theta}_j^T x_i| \cdot ||X(\hat{\beta} - \beta_0)||_2^2/n = O_P(K_n s_0 \lambda^2) \) (see the proof of Theorem 3.1 in van de Geer et al. 2014). It thus implies that \(\sqrt{n} ||\hat{\Theta} R||_{\infty} = O_P(\sqrt{n}K_n s_0 \lambda^2) \). By Assumptions 4.3-4.4, we have

\[
||\Delta||_{\infty} = ||\sqrt{n}(\hat{\Theta} \hat{\Sigma} - I)(\hat{\beta} - \beta_0)||_{\infty} \leq ||\hat{\Theta} \hat{\Sigma} - I||_{\infty} \sqrt{n} ||\hat{\beta} - \beta_0||_1 = O_P(\sqrt{n}\lambda \lambda_* s_0)
\]
Following the arguments in the proof of Lemma 1.2, it can be shown that under Assumption 4.5

\[
\max_{j \in G} \sqrt{n} |(\Theta_j^T - \hat{\Theta}_j^T) \mathbb{E}_n \hat{L}_{\beta_0}| = \max_{j \in G} \left| \sum_{i=1}^{n} \hat{\xi}_{ij} / \sqrt{n} - \sum_{i=1}^{n} \xi_{ij} / \sqrt{n} \right|
\]

\[= O_P(K_n \max_j s_j \log(p) / \sqrt{n}) + O_P \left(K_n'^2 s_0 \left(\lambda^2 \sqrt{n} \lor \lambda \sqrt{\log(p)} \right) \right)\]

Thus (11) follows from a proper choice of \(\zeta_1\).

By Lemma 1.1, we have

\[
\sup_{x \in \mathbb{R}} \left| P \left(\max_{j \in G} \sum_{i=1}^{n} \xi_{ij} / \sqrt{n} \leq x \right) - P \left(\max_{j \in G} \sum_{i=1}^{n} \xi_{ij} / \sqrt{n} \leq x \right) \right| \lesssim n^{-c'}, \quad c' > 0,
\]

where \(\{z_i = (z_{i1}, \ldots, z_{ip})'\}\) is a sequence of mean zero independent Gaussian vector with \(\mathbb{E}z_i z_i' = \Theta_j^T \Sigma_{\beta_0} \Theta_j\). By the arguments in the proof of Theorem 3.2 in Chernozhukov et al. (2013), we have

\[
\sup_{\alpha \in (0, 1)} |P(T_G > \tilde{c}_G^*(\alpha)) - \alpha| \lesssim \pi(v) + P(\tilde{\Gamma} > v) + n^{-c'} + \zeta_1 \sqrt{1 \lor \log(p/\zeta_1)} + \zeta_2,
\]

where \(\pi(v) = C_2 v^{1/3} (1 \lor \log(p/v))^{2/3}\). The conclusion follows by choosing \(v = 1/(\alpha_n (\log(p))^2)\) in (12).

\[\diamondsuit\]

2 Additional numerical results

We consider the linear models where the rows of \(X\) are fixed i.i.d realizations from \(N_p(0, \Sigma)\) with \(\Sigma = (\Sigma_{i,j})_{i,j=1}^{p}\) under two scenarios: (i) Toeplitz: \(\Sigma_{i,j} = 0.9|i-j|\); (ii) Exchangeable/Compound symmetric: \(\Sigma_{i,i} = 1\) and \(\Sigma_{i,j} = 0.8\) for \(i \neq j\). The active set is \(S_0 = \{1, 2, \ldots, s_0\}\) with \(s_0 = 3\) or 15. To obtain the main Lasso estimator, we implemented the scaled Lasso with the tuning parameter \(\lambda_0 = \sqrt{2} \tilde{L}_n(k_0/p)\) with \(\tilde{L}_n(t) = n^{-1/2} \Phi^{-1}(1 - t)\), where \(\Phi\) is the cumulative distribution function for \(N(0, 1)\), and \(k_0\) is the solution to \(k = \tilde{L}_1^4(k/p) + 2 \tilde{L}_1^2(k/p)\). We estimate the noise level \(\sigma^2\) using the modified variance estimator.
2.1 Modified variance estimator

Figure S.1 provides boxplots of $\hat{\sigma}/\sigma$ for the variance estimator delivered by the scaled Lasso (denoted by “SLasso”) and for the modified variance estimator in (24) of the paper (denoted by “SLasso*”). Clearly, the modified variance estimator corrects the noise underestimation issue and thus is preferable.

2.2 Impact of the remainder term

We discuss the impact of the (normalized) remainder term Δ on the coverage accuracy. Recall the linear expansion $\sqrt{n}(\hat{\beta} - \beta^0) = \hat{\Theta}^T X^T \epsilon/\sqrt{n} + \Delta$, where $\Delta = (\Delta_1, \ldots, \Delta_p)^T = -\sqrt{n}(\hat{\Theta}^T \Sigma^{-1} - I)(\hat{\beta} - \beta^0)$ with $\hat{\Sigma}$ being the Gram matrix and $\hat{\beta}$ being the Lasso estimator. The studentized maximum type test statistic can be written as

$$\max_{1 \leq j \leq p} \frac{\sqrt{n}|\hat{\beta}_j - \beta^0_j|}{\sqrt{\hat{\omega}_{jj}}} = \max_{1 \leq j \leq p} \left| \sum_{i=1}^{n} \hat{\xi}_{ij} \sqrt{n} \hat{\omega}_{jj} + \frac{\Delta_j}{\sqrt{\hat{\omega}_{jj}}} \right|.$$ (13)

Thus the coverage accuracy can be greatly affected by the term $\Delta_j^* := \frac{\Delta_j}{\sqrt{\hat{\omega}_{jj}}}$. Note that this (normalized) remainder term is determined by $\hat{\Theta}$. We now consider three different methods in estimating Θ: (i) nodewise Lasso with λ_js chosen by 10-fold cross validation; (ii) nodewise Lasso with $\lambda_j = 0.01$; (iii) the method in Javanmard and Montanari (2014) with the tuning parameters chosen automatically by their algorithm. To empirically evaluate $\Delta^* := (\Delta^*_1, \ldots, \Delta^*_p)^T$, we consider the linear models with $t(4)/\sqrt{2}$ errors, $n = 100$ and $p = 500$. Define $\Delta^*_{ac} = (\Delta^*_j)_{j \in S_0}$ and $\Delta^*_{in} = (\Delta^*_j)_{j \in S^c_0}$. Figure S.2 presents the boxplots for $||\Delta^*_{ac}||_\infty$ and $||\Delta^*_{in}||_\infty$. The nodewise Lasso clearly outperforms the method in Javanmard and Montanari (2014), and the choice of $\lambda_j = 0.01$ yields the smallest $||\Delta^*_{ac}||_\infty$ in all cases. In addition, $||\Delta^*_{ac}||_\infty$ is relatively large when Σ is exchangeable, $s_0 = 15$ and $p = 500$, which explains the lack of performance/undercoverage in this case. We observe that the maximum norms of Δ^*_{ac} and Δ^*_{in} generally increase with s_0. Overall, the above discussions support our observations in Tables 1-2 of the paper in the sense that the lower the (normalized) remainder term is, the more accurate the coverage is.
References

Figure S.1: Boxplots for $\hat{\sigma}/\sigma$, where $s_0 = 3$ or 15, Σ is Toeplitz or exchangeable, and the errors are generated from the studentized $t(4)$ distribution. Here “SLasso” corresponds to the variance estimator delivered by the scaled Lasso and ‘SLasso*’ corresponds to the modified variance estimator.
Figure S.2: Boxplots for $||\Delta_{nc}^*||_\infty$ and $||\Delta_{m}^*||_\infty$, where $s_0 = 3$ or 15, $p = 500$, Σ is Toeplitz or exchangeable, and the errors are $t(4)/\sqrt{2}$. Here “CV”, “0.01”, “JM” and “TRUE” denote the nodewise Lasso with λ_j’s chosen by 10-fold cross validation and $\lambda_j = 0.01$, the method in Javanmard and Montanari (2014) and the method with the true Θ respectively. Note that the y-axis is plotted on a log scale.