STATISTICS 652-601
Spring 2005

INSTRUCTOR: Dr. Thomas E. Wehrly
OFFICE HOURS: 10:15-11:15 WF, 1-2 MF
OFFICE: 459C Blocker Building
PHONE NUMBER: 845-1359
E-MAIL ADDRESS: twehrly@stat.tamu.edu
WORLD-WIDE WEB: http://stat.tamu.edu/~twehrly/652/652.html
GRADER: Lei Jin
OFFICE HOURS: 2-4 TTh, 1-3 F
OFFICE: 506C Blocker Building
PHONE NUMBER: 458-0573
E-MAIL ADDRESS: ljin@stat.tamu.edu
TEXT: An Introduction to Statistical Methods and Data Analysis,
Fifth Edition by Lyman Ott

COURSE POLICY
1. Homework will be assigned regularly, and it will be turned in and graded. You may
discuss the homework problems with other students, but you should write up your
solutions independently. Do not copy other students’ solutions or solutions from a
solutions manual. Homework will be graded by the teaching assistant. Homework
will count as 10% of the course grade. Late homework will be accepted only for
university excused absences.

2. If you are unable to take a test when scheduled because of illness, accident, or cir-
cumstances beyond your control, notify me by telephone before the exam is given. A
make-up test will be scheduled as soon as possible.

3. A grade of Incomplete (I) will be given only in the event that circumstances beyond
your control were the cause of your missing class for an extended period. This grade
is not to be given because you feel that you have too much other work or study or
because you think that you will not earn an acceptable grade in the course.
4. A course average from 90 to 100 will be an A, from 80 to 89 will be a B, etc. The
course average will be determined as follows:

- First Midterm Exam (February 25): 25%
- Second Midterm Exam (April 13): 25%
- Final Exam (May 9, 8 am): 40%
- Homework: 10%

5. **ACADEMIC INTEGRITY STATEMENT:** “An Aggie does not lie, cheat, or
steal or tolerate those who do.” The Aggie Honor Council Rules and Procedures are
available at http://www.tamu.edu/aggiehonor.

6. **COPYRIGHT NOTICE:** The handouts used in this course are copyrighted. By
“handouts,” I mean all materials generated for this class including syllabi, exams,
class notes, in-class material, and computer examples. Because these materials are
copyrighted, you do not have the right to copy them, unless I expressly grant permis-
sion.

7. **STATEMENT ON PLAGIARISM:** As commonly defined, plagiarism consists
of passing off as one’s own ideas, words, writing, etc., which belong to another. In
accordance with this definition, you are committing plagiarism if you copy the work of
another person and turn it in as your own, even if you should have the permission of
that person. Plagiarism is one of the worst academic sins, for the plagiarist destroys
the trust among colleagues without which research cannot be safely communicated.
If you have any questions regarding plagiarism, please consult the latest issue of the
Texas A&M University Student Rules, under the section "Scholastic Dishonesty."

8. **STATEMENT ON DISABILITIES:** The Americans with Disabilities Act (ADA)
is a federal anti-discrimination statute that provides comprehensive civil rights pro-
tection for persons with disabilities. Among other things, this legislation requires that
all students with disabilities be guaranteed a learning environment that provides for
reasonable accommodation for their disabilities. If you believe you have a disability
requiring an accommodation, please contact the Office of Support Services for Stu-
dents with Disabilities in Room 126 of the Koldus Student Services Building. The
phone number is 845-1637.
TOPICS COVERED IN STATISTICS 651 WHICH ARE PREREQUISITE FOR STATISTICS 652

Descriptive statistics and graphical methods

Normal distribution, sampling distribution, and Central Limit Theorem

Hypothesis tests:
 Basic ideas including level of significance, power, p-value
 Tests for one mean (t, Z)
 Tests for two means (t, Z)
 Paired t test
 Tests for one and two proportions

Confidence intervals corresponding to these tests

One-way analysis of variance

Multiple comparisons

Simple linear regression

Correlation
STATISTICS 652—Tentative Syllabus

<table>
<thead>
<tr>
<th>Topic</th>
<th>Chapters</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Linear Regression and Correlation</td>
<td>11</td>
</tr>
<tr>
<td>A. Review of simple linear regression</td>
<td></td>
</tr>
<tr>
<td>B. Correlation</td>
<td></td>
</tr>
<tr>
<td>II. Multiple Regression and the General Linear Model</td>
<td>12, 13</td>
</tr>
<tr>
<td>A. The general linear model, matrix notation, and least squares estimates</td>
<td></td>
</tr>
<tr>
<td>B. Statistical inference for the general linear model, the ANOVA table for multiple regression, testing individual coefficients</td>
<td></td>
</tr>
<tr>
<td>C. Testing a subset of coefficients</td>
<td></td>
</tr>
<tr>
<td>D. Estimating the mean response, predicting a single response</td>
<td></td>
</tr>
<tr>
<td>E. Checking for violations of assumptions</td>
<td></td>
</tr>
<tr>
<td>F. Selection of variables, formulating the model</td>
<td></td>
</tr>
<tr>
<td>III. Design and Analysis of Experiments</td>
<td>14</td>
</tr>
<tr>
<td>A. Basic concepts of experimental design</td>
<td></td>
</tr>
<tr>
<td>B. Review of completely randomized design (one-way ANOVA)</td>
<td>8</td>
</tr>
<tr>
<td>C. Review of contrasts, multiple comparisons.</td>
<td>9</td>
</tr>
<tr>
<td>D. Randomized complete block design and analysis of variance</td>
<td>15</td>
</tr>
<tr>
<td>E. Latin square design and analysis of variance</td>
<td>15</td>
</tr>
<tr>
<td>F. Factorial experiments and analysis of variance, interactions</td>
<td>15</td>
</tr>
<tr>
<td>IV. Analysis of Covariance</td>
<td>16</td>
</tr>
<tr>
<td>A. Use of dummy variables in regression, relationship to analysis of variance and regression</td>
<td></td>
</tr>
<tr>
<td>B. Testing for equality of slopes and for equality of adjusted treatment means</td>
<td></td>
</tr>
<tr>
<td>V. Analysis of Variance for Some Random and Mixed Effects Models</td>
<td>17</td>
</tr>
<tr>
<td>A. One-way random effects model and components of variances</td>
<td></td>
</tr>
<tr>
<td>B. Model with two random effects</td>
<td></td>
</tr>
<tr>
<td>C. Mixed-effects models</td>
<td></td>
</tr>
<tr>
<td>VI. Analysis of Categorical and Count Data</td>
<td>10</td>
</tr>
<tr>
<td>A. Review of one and two sample binomial procedures.</td>
<td></td>
</tr>
<tr>
<td>B. Multinomial experiments, chi-squared goodness of fit.</td>
<td></td>
</tr>
<tr>
<td>C. The general two-way contingency table</td>
<td></td>
</tr>
<tr>
<td>D. Introduction to logistic regression</td>
<td>12</td>
</tr>
</tbody>
</table>