SYLLABUS

STATISTICS 601-600

INSTRUCTOR: Dr. Thomas E. Wehrly
OFFICE HOURS: 3–4 MWF
OFFICE: 459C Blocker Building
PHONE NUMBER: 845-1359
E-MAIL ADDRESS: twehrly@stat.tamu.edu
WORLD-WIDE WEB: http://stat.tamu.edu/~twehrly/601/601.html
TEXT:

by D. C. Montgomery and G. C. Runger

GRADER: Ganggang Xu
OFFICE HOURS: MW 3:00-5:00; Thursday: 3:35-5:35
OFFICE: 422 Blocker Building
PHONE NUMBER: 979-845-8889
E-MAIL ADDRESS: gang@stat.tamu.edu

PREREQUISITE: Two semesters of calculus. Linear algebra is helpful.

FOCUS OF COURSE: STAT 601 is intended for a mixed audience of graduate students in various fields of science and engineering who plan to use statistical methods in their own research. The course will emphasize the analysis of data using SAS and interpreting the results.

COMPUTING: We will use SAS software for examples and you may wish to use it for homework. This requires access to a computer with SAS. There are microcomputers in the Open Access Labs (such as the one in Blocker) with PC-SAS or you may get PC-SAS free from the Microcomputing Center.

GRADING POLICY

1. All exams are cumulative and closed book. You will be allowed to bring statistical tables and one additional page (8 × 11) of notes per exam. Examinations will be given in class on Tuesday, February 27, and Tuesday, April 12. The final examination will be held on Tuesday, May 8, 8:00–10:00am.

2. Homework will be assigned regularly, and it will be turned in and graded. You may discuss the homework problems with other students, but you should write up your so-
olutions independently. Do not copy other students’ solutions, solutions from previous years, or solutions from a solutions manual.

3. If you are unable to take a test when scheduled because of illness, accident, or circumstances beyond your control, notify me by telephone before the exam is given. A make-up test will be scheduled as soon as possible.

4. A grade of Incomplete (I) will be given only in the event that circumstances beyond your control were the cause of your missing class for an extended period. This grade is not to be given because you feel that you have too much other work or study or because you think that you will not earn an acceptable grade in the course.

5. A course average from 90 to 100 will be an A, from 80 to 89 will be a B, etc. The course average will be determined from the two midterm exams, 27% each, homework, 10%, and the final exam, 36%.

- **ACADEMIC INTEGRITY STATEMENT:** “An Aggie does not lie, cheat, or steal or tolerate those who do.” The Aggie Honor Council Rules and Procedures are available at http://www.tamu.edu/aggiehonor.

- **STATEMENT ON PLAGIARISM:** As commonly defined, plagiarism consists of passing off as one’s own ideas, words, writing, etc., which belong to another. In accordance with this definition, you are committing plagiarism if you copy the work of another person and turn it in as your own, even if you should have the permission of that person. Plagiarism is one of the worst academic sins, for the plagiarist destroys the trust among colleagues without which research cannot be safely communicated. If you have any questions regarding plagiarism, please consult the latest issue of the Texas A&M University Student Rules, under the section ”Scholastic Dishonesty.”

- **STATEMENT ON DISABILITIES:** The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation for their disabilities. If you believe you have a disability requiring an accommodation, please contact the Office of Disability Services in Room B118 of Cain Hall (phone (979) 845-1637).

- **COPYRIGHT NOTICE:** The handouts used in this course are copyrighted. By “handouts,” I mean all materials generated for this class including syllabi, exams,
in-class material, and computer examples. Because these materials are copyrighted, you do not have the right to copy the handouts, unless I expressly grant permission.

Instructions for Using the STAT 601 Website:

All of the information for the course will be accessible on the course website. To access the website, you will need to register according to the following instructions:
1. Go to http://dl.stat.tamu.edu/dostat/ and click on the REGISTER HERE link.
2. Fill in all of the information and click on SUBMIT.
4. Click on the Add Course link to the left.
5. Fill in the Course Reference “xxxx” and Registration Code “xxxx” and press Register.

The codes are the characters within the quotes, but do not include the quotes. I will e-mail these codes to the students enrolled in the class.

After you have registered, take a look at the resources. Under “Files” you will find the lecture notes and examples that are used in the class.

STATISTICS 601—Tentative Syllabus

<table>
<thead>
<tr>
<th>Topic</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Modeling Data</td>
<td></td>
</tr>
<tr>
<td>A. Data and Model, Randomness and Inference</td>
<td>1.1–1.4</td>
</tr>
<tr>
<td>B. Types of Data</td>
<td>3.1, 4.1</td>
</tr>
<tr>
<td>C. Displaying Data: crosstabulation, histogram, scatterplot</td>
<td>6.3, 6.4, 6.6, 11.1</td>
</tr>
<tr>
<td>D. Describing Data: mean, standard deviation, quantiles, boxplot</td>
<td>6.1, 6.3, 6.5</td>
</tr>
<tr>
<td>E. Basic Probability: interpretations, rules</td>
<td>2.1–2.3</td>
</tr>
<tr>
<td>F. Conditional probability, indepencendence, Bayes rule</td>
<td>2.4–2.7</td>
</tr>
<tr>
<td>G. Random variables: density, mean, variance</td>
<td>2.8, 3.1–3.4, 4.1–4.4</td>
</tr>
<tr>
<td>H. Special Distributions including binomial, Poisson, normal, gamma</td>
<td>3.6–3.9, 4.5–4.11</td>
</tr>
<tr>
<td>I. Density Estimates and Quantile Plots</td>
<td>6.3, 6.6</td>
</tr>
</tbody>
</table>

II. Statistical Inference	
A. Estimation of Parameters: methods, mean, standard deviation	7.1, 7.4
B. Sampling Behavior: bias, standard error, normal approximation	7.2, 7.3
C. Confidence Intervals: intervals for a mean and proportion, 8.1–8.3, 8.5
D. Hypothesis Tests: t-test, hypotheses, p-value, Type I and II errors 9.1–9.3
E. Designing a Sample: sample size determination 8.2, 8.5, 9.2, 9.5
F. Inference for Other Parameters: variance, difference of means, ratio of variances

III. Correlation and Regression
A. Joint Distributions: correlation and independence 5.1–5.4
B. Conditional Expectation and Regression 5.1, 5.2, 11.1–11.2
C. Inference for Correlation 11.8
D. Simple Linear Regression: least squares fit, inference 11.1–11.6
E. Checking Adequacy of the Linear Model 11.7
F. Multiple Linear Regression: estimation, prediction 12.1–12.4
G. Model Adequacy: outliers, influential values, Studentized residuals, 12.5
 Cook’s D
H. Model Fitting and Selection: hypothesis tests, model selection 12.6

IV. Design of Experiments
B. Handling Assumptions: testing homogeneity of variances, Kruskal-Wallis test 15.5
C. Contrasts
D. Random Effects Model: tests, estimating variance components 13.3
E. Randomized Block Design 13.4
F. Factorial Models: interaction, analysis of variance, random and mixed models 14.1–14.4
G. General Linear Models: covariate analysis

V. Categorical and Count Data
A. Distributions for Counts: binomial, Poisson and multinomial 3.6, 3.9
B. Inference for Proportions 8.5, 9.5, 10.6
C. Categorical Data Analysis: goodness of fit and contingency tests 9.7–9.8