Suppose the random variable Z has a standard normal distribution (with mean zero and variance one). We can use Table 1 to evaluate the probability $P(Z \leq t)$ [where t takes any value].

Suppose I want to know $P(Z \leq 1.3)$, this is the area.

The first row and column in Table 1 correspond to the x-axis. ‘Inside’ the table is the area under the graph (the probability).

To evaluate $P(Z \leq 1.3)$ look at:

| z | 0.00 | 0.01 | 0.02 |...
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>0.9032</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This number here corresponds to $P(Z \leq 1.3) = 0.9032$.
Evaluate \(P(Z \leq -0.56) \)

This corresponds to the area:

\[
\begin{array}{ccccccc}
Z & 0.00 & 0.01 & 0.02 & 0.03 & 0.04 & 0.05 & 0.06 & 0.07 & 0.08 \\
\hline
-0.7 & 0.2877 &
-0.6 &
-0.5 &
-0.4 &
-0.3 &
\end{array}
\]

This here is the probability

\[P(Z \leq -0.56) = 0.2877 \]

Evaluating the value \(t \) such that \(P(Z \leq t) = \text{probability} \)

- Suppose I want to find the value on the x-axis such that \(P(Z \leq t) = 0.8907 \).
- This time I look inside the table for the number 0.8907 and read outwards.
$P(z \leq t) = 0.8907$

\[\begin{array}{c|c|c}
 z & 0.03 & 0.8708 \\
 1.2 & 0.8888 & 0.8907 & 0.8925 \\
 & 0.9082 \\
\end{array} \]

We see that $t = 1.23$, that is $P[z \leq 1.23] = 0.9092$.

Question: What is $P(z \leq t) = 0.5$?

Answer: Since the standard normal distribution is symmetric about zero and the total area under the graph is one, then $P(z \leq 0) = 0.5$.

This area is 0.5.
a) Evaluate $P(0.6 < Z \leq 1.8)$.

By using disjoint event arguments,

$$P(0.6 < Z \leq 1.8) = P(Z \leq 1.8) - P(Z \leq 0.6)$$

Now use Normal tables to find $P(Z \leq 1.8)$ and $P(Z \leq 0.6)$

(a) Read the first column for 1.8 and the first row for 0.00, using this you will see that

$$P(Z \leq 0.6) = 0.7257$$

(b) Read the first column for 1.8 and first row for 0.00, using this we see that

$$P(Z \leq 1.8) = 0.9032$$

Therefore

$$P(0.6 < Z \leq 1.8) = 0.9032 - 0.7257.$$
(b) \(P(\bar{z} \leq -1.1) \)
\[= 0.1357 \]

(ii) \(P(\bar{z} \leq 0.6) \)
\[= 0.7257 \]

(iii) \(P(\bar{z} \leq 3.0) \)
\[= 0.9987 \]

(iv) \(P(\bar{z} \leq -2.12) \)
\[= 0.0170 \]

(c) \(P(\bar{z} \leq -1.1) \) can be interpreted as, if
\(\bar{z} \) is a random variable with a standard normal distribution, and we were to make 100 independent draws. Then, on average about 13.57 \((\approx 14) \) of the 100 draws would be less than or equal to -1.1.

Similarly, about 99.87 of the 100 draws will
be less than a mean 3. That mean the vast majority of the draws will take a value less than 3.

\[(d) \pi P(Z > -1.1) \]
\[= 1 - P(Z \leq -1.1) \]
\[= 1 - 0.1357 \]

(ii) \[P(Z > 0.6) \]
\[= 1 - P(Z \leq 0.6) \]
\[= 1 - 0.7257 \]

(iii) \[P(Z > 3.0) \]
\[= 1 - 0.9987 \]

(iv) \[P(Z > -2.12) \]
\[= 1 - P(Z \leq -2.12) \]
\[= 1 - 0.0170 \]
(e) \(P(-1.1 < z \leq 0.6) \)
\[
= P(z \leq 0.6) - P(z \leq -1.1)
\]
\[
= 0.7257 - 0.1357
\]

(ii) \(P(-2.12 \leq z \leq 3.0) \)
\[
= P(z \leq 3.0) - P(z \leq -2.12)
\]
\[
= 0.9977 - 0.0170
\]

(2) \(P(-2.12 \leq z \leq 0) \)
\[
= P(z \leq 0) - P(z \leq -2.12)
\]
\[
= 0.5 - 0.0170
\]