The number of costs is

\[\sum_{i=1}^{n} x_i \]

1. **PROCEDURE**

 a. **PROCEDURE**
 b. **PROCEDURE**
 c. **PROCEDURE**
 d. **PROCEDURE**
 e. **PROCEDURE**
 f. **PROCEDURE**
 g. **PROCEDURE**
 h. **PROCEDURE**
 i. **PROCEDURE**
 j. **PROCEDURE**
 k. **PROCEDURE**
 l. **PROCEDURE**
 m. **PROCEDURE**
 n. **PROCEDURE**
 o. **PROCEDURE**
 p. **PROCEDURE**

 \[\sum_{i=1}^{n} x_i \]

2. **PROCEDURE**

 a. **PROCEDURE**
 b. **PROCEDURE**
 c. **PROCEDURE**
 d. **PROCEDURE**
 e. **PROCEDURE**
 f. **PROCEDURE**
 g. **PROCEDURE**
 h. **PROCEDURE**
 i. **PROCEDURE**
 j. **PROCEDURE**
 k. **PROCEDURE**
 l. **PROCEDURE**
 m. **PROCEDURE**
 n. **PROCEDURE**
 o. **PROCEDURE**
 p. **PROCEDURE**

 \[\sum_{i=1}^{n} x_i \]

3. **PROCEDURE**

 a. **PROCEDURE**
 b. **PROCEDURE**
 c. **PROCEDURE**
 d. **PROCEDURE**
 e. **PROCEDURE**
 f. **PROCEDURE**
 g. **PROCEDURE**
 h. **PROCEDURE**
 i. **PROCEDURE**
 j. **PROCEDURE**
 k. **PROCEDURE**
 l. **PROCEDURE**
 m. **PROCEDURE**
 n. **PROCEDURE**
 o. **PROCEDURE**
 p. **PROCEDURE**

 \[\sum_{i=1}^{n} x_i \]
(f) The number of lesions and the number of animals is not matched. We are testing the hypothesis that the proportion of lesions is the same in both groups.

(g) The hypothesis is to test if there is a difference in the proportion of lesions between the two groups. The null hypothesis is that the proportion of lesions is the same in both groups.

(h) The alternative hypothesis is that the proportion of lesions is different in the two groups.

(i) The test statistic is calculated as follows:

\[
Z = \frac{\hat{p} - \hat{q}}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n} + \frac{\hat{q}(1-\hat{q})}{n}}}
\]

where \(\hat{p}\) and \(\hat{q}\) are the sample proportions of lesions in the two groups, and \(n\) is the sample size.

(j) The critical value for a two-tailed test at \(\alpha = 0.05\) is \(Z = \pm 1.96\).

(k) If the calculated \(Z\) value is outside the critical values, we reject the null hypothesis.

(l) We compare the calculated \(Z\) value with the critical values to determine if the difference is statistically significant.
The margin of error for the distribution with the difference of means. The margin of error is the amount by which the point estimate of the difference of means could differ from the true difference of means with a certain level of confidence.

To calculate the margin of error, you need to use the standard error of the difference of means. The standard error is the standard deviation of the sampling distribution of the difference of means. It is calculated using the following formula:

\[\text{Standard Error} = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} \]

where:
- \(s_1 \) is the standard deviation of group 1
- \(s_2 \) is the standard deviation of group 2
- \(n_1 \) is the sample size of group 1
- \(n_2 \) is the sample size of group 2

The margin of error is then calculated by multiplying the standard error by the critical value from the t-distribution or the normal distribution, depending on the sample size and whether the population standard deviation is known.

The confidence interval for the difference of means is then calculated by adding and subtracting the margin of error from the point estimate of the difference of means.

The confidence interval gives a range of values within which the true difference of means is likely to fall. The level of confidence is determined by the critical value used and the width of the interval.
The results of the experiment were as follows:

- Hypothesis 1:
 - Null hypothesis (H₀): μ₁ = μ₂
 - Alternative hypothesis (H₁): μ₁ ≠ μ₂
 - t-statistic calculated: t = 2.50
 - Critical t-value (for α = 0.05, df = 30): t₀ = 2.04
 - Since t > t₀, we reject the null hypothesis. There is a significant difference between the two groups.

- Hypothesis 2:
 - Null hypothesis (H₀): μ₃ = μ₄
 - Alternative hypothesis (H₁): μ₃ ≠ μ₄
 - t-statistic calculated: t = -1.50
 - Critical t-value (for α = 0.05, df = 20): t₀ = 1.72
 - Since t < t₀, we fail to reject the null hypothesis. There is no significant difference between the two groups.

In conclusion, the results support the first hypothesis and do not support the second hypothesis.
None