A very short note on B-splines

BY SAMIRAN SINHA
Department of Statistics, Texas A&M University, College Station, Texas 77843-3143
sinha@stat.tamu.edu

The present note clarifies some of the underlying facts which are used in the calculation of the basis functions of B-spline using R. Suppose we want to construct the basis functions for the cubic B-spline for a given value of \(x \), a set of inner knot points, and boundary knot points. Let the inner knot points be \(c(-0.5, 0, 0.5) \) and the boundary knot points be \(c(-4, 4) \), then the command in R to generate the spline basis functions is

```r
> library(splines)
> x=rnorm(1, 0, 1)
> x
[1] -0.2355063
> bs(x, knots=c(-0.5, 0, 0.5), Boundary.knots=c(-4, 4), degree=3, intercept=T)
```

The above command will produce 7 basis functions. Note the set of all knot points are \(c(-4, -4, -4, -4, -0.5, 0, 0.5, 4, 4, 4, 4) \) and the number of basis functions is \(m - n - 1 \), where \(m \) is the total number of knot points which is 11 in this example, and \(n \) is the degree, and for this example it is 3. Note that the knots points are ordered, and in R the entire set of knots are obtained by adding \((n + 1) \) lower boundary knot and \((n + 1) \) upper boundary knot with the inner knot points. Let the cubic spline basis functions be \(N_{7,3}(x) \), \(N_{6,3}(x), \cdots, N_{1,3}(x) \), where the second subscript denotes the degree of the splines. Each of the basis can be constructed through the following recursive formula. Thus to construct the basis functions of degree 3 one needs to compute all the basis functions of degree lower than 3. The recursive formula is given below.

\[
N_{i,0}(x) = I(u_i \leq x < u_{i+1})
\]

\[
N_{i,p}(x) = \frac{x - u_i}{u_{i+p} - u_i} N_{i,p-1}(x) + \frac{u_{i+p+1} - x}{u_{i+p+1} - u_{i+1}} N_{i+1,p-1}(x)
\]

where \(u_i \)'s are the ordered knot points, and the degree of the spline, \(p \), will take values 1, 2, and 3. For the above computation we define \(0/0 \) as 0. The following figure shows the necessary splines needed to compute before we get \(N_{7,3}(x) \).
Similarly to obtain the value of $N_{1,3}(x)$ one has to compute the basis which come across in the following figure.

Note that when we write

```r
> bs(x, knots=c(-0.5, 0, 0.5), Boundary.knots=c(-4, 4), degree=3, intercept=F)
```

then R will return 6 basis functions $N_{7,3}(x)$, $N_{6,3}(x)$, \cdots, $N_{2,3}(x)$. Following is a simple R
code to generate basis function for given inner knots and the boundary knots.

```r
newbs=function(x, degree, inner.knots, Boundary.knots) {
  Boundary.knots=sort(Boundary.knots);
  knots=c(rep(Boundary.knots[1], (degree+1)), sort(inner.knots),
          rep(Boundary.knots[2], (degree+1)));
  np=degree+length(inner.knots)+1
  s=rep(0, np)
  if(x==Boundary.knots[2]) {s[np]=1} else {for( i in 1: np)
    s[i]=basis(x, degree, i, knots)}
  return(s)
}

basis=function(x, degree, i, knots)
{ if(degree==0){ if((x<knots[i+1])&(x>=knots[i])) y=1 else
  y=0}else{
  if((knots[degree+i]-knots[i])==0) {temp1=0} else {temp1=
    (x-knots[i])/(knots[degree+i]-knots[i])};
  if((knots[i+degree+1]-knots[i+1])==0) {temp2=0} else {temp2=
    (knots[i+degree+1]-x)/(knots[i+degree+1]-knots[i+1])}
  y= temp1*basis(x, (degree-1), i, knots) +temp2*basis(x, (degree-1),
           (i+1), knots)}
  return(y)
}
> newbs(2, degree=3, inner.knots=c(-0.25, -0.5, 0, 0.25, 0.5),
   + Boundary.knots=c(-4, 4))
[1] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
    0.0000000 0.0000000 0.1523810 0.4252154 0.3436864 0.0787172
>
Following is the Fortran code to generate B-spline basis function.

```fortran
subroutine splinebasis(d, n, m, m1, k, x, innerknots, *boundaryknots, basis)
C This subroutine generates Bspline basis functions.
C x(n) is a n by 1 input vector for which B-spline basis
C function will be evaluated.
C innerknots(m1) set of m1 innerknot points.
C newknots is the entire set of knots, of length m=m1+2(d+1)
C where d is the degree of the splines.
C k=number of spline basis=m1+d+1
IMPLICIT NONE
integer*4 d, k, m, m1, n
double precision x(n), innerknots(m1), boundaryknots(2)
double precision newknots(m), basis(n, k), result
external b
integer*4 i1, i, j
do i1=1, (d+1)
 newknots(i1)=boundaryknots(1)
end do
do i1=(d+2), (m1+d+1)
 newknots(i1)=innerknots(i1-d-1)
end do
do i1=(m1+d+2), m
```

3
newknots(i1)=boundaryknots(2)
end do
doi=1, n
if(x(i).eq.boundaryknots(2)) then
  basis(i, k)=1.d0
  do j=1, (k-1)
    basis(i, j)=0.d0
  end do
else
  do j=1, k
    call b(m, j, (d+1), x(i), newknots, result, b)
    basis(i, j)=result
  end do
endif
end do
return
dend

C ----------------
subroutine b(i1, i2, i3, y, newknots, result, dumsub)
C This subroutine calculates i2 th basis of spline of
C degree (i3-1).
IMPLICIT NONE
integer*4 i1, i2, i3
double precision y, newknots(i1), temp1, temp2, result,
* result1, result2
external dumsub
if(i3.eq.1) then
  if((y.ge.newknots(i2)).and.(y.lt.newknots(i2+1))) then
    result=1.d0
  else
    result=0.d0
  endif
else
  call dumsub(i1, i2, (i3-1), y, newknots, result1, dumsub)
  temp1=(y-newknots(i2))*result1/(newknots(i2+i3-1)-
  * newknots(i2))
  if(temp1.ne.temp1) temp1=0.d0
  call dumsub(i1, (i2+1), (i3-1), y, newknots, result2, dumsub)
  temp2=(newknots(i2+i3)-y)*result2/
  * (newknots(i2+i3)-newknots(i2+1))
  if(temp2.ne.temp2) temp2=0.d0
  result=temp1+temp2
endif
return
dend

If one wants to call this subroutine from R following is an example code. We assume that
the above Fortran subroutines were saved in a file named “spline.f”.

> dyn.load("spline.so")
> n=10;
> m1=3;
> d=3;
> m=m1+2*(d+1);
knots = c(-0.25, 0.0, 0.25)
boundaryknots = c(-3, 3)
x = rnorm(n)
k = d + m1 + 1;
basis = matrix(0, nrow = n, ncol = k);
storage.mode(basis) <- "double"
f1 = .Fortran("splinebasis", d = as.integer(d), n = as.integer(n),
+    m = as.integer(m), m1 = as.integer(m1), +
+    k = as.integer(k), x = as.double(x), knots = as.double(knots),
+    boundaryknots = as.double(boundaryknots), output = basis)