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Abstract

New statistical procedures to evaluate the Models-3/Community Multiscale Air Quality (CMAQ) using observed

data are introduced. Certain space–time correlations are used to assess dynamic aspects of CMAQ and to compare the

space–time structure of CMAQ to that of observations. Our analyses show that, overall, CMAQ matches the space–

time correlation structure of observed sulfate concentrations well. Analyses on the space–time correlation of the

difference of observations and CMAQ output show that CMAQ partially captures time lagged spatial variation of

sulfate concentrations. Separable covariance functions are shown to provide a poor description of the observations.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The Models-3/Community Multiscale Air Quality

(CMAQ) modeling system has been developed by the

United States Environmental Protection Agency (US

EPA) to understand and evaluate air quality by

producing maps of multiple pollutants’ distributions

over the United States (and some parts of Canada).

CMAQ takes terrain, land use, emissions, meteorology

and other information as its inputs and produces various

pollutants’ ambient concentrations or wet/dry deposi-

tions. Its output is in the form of block averages in

multiple layers; the resolution can be set by the user to a

certain extent. There have been many improvements

made to the science and mechanisms of CMAQ since its

first release to the public in June 1998. For example, the

mechanisms for aerosol and cloud chemistry have been

updated constantly and the Plume-In-Grid model has
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been added to the system to generate more accurate flow

of emissions from point sources. A version of CMAQ

that can be run in parallel across multiple processors is

now available. More detailed information about CMAQ

and its development can be found in Dennis et al.

(1996), Models-3 website (http://www.epa.gov/asmdnerl/

models3/) or Community Modeling and Analysis

System (CMAS) website (http://www.cmascenter.org).

To evaluate the accuracy of CMAQ, it is essential to

compare the output with observations from monitoring

stations. Eder et al. (2002) and Mebust et al. (2003)

compute bias and error statistics of CMAQ output

relative to observations, plot observations against

CMAQ output and fit linear regression lines. These

simple comparisons are valuable but are not effective for

understanding many aspects of the spatial and temporal

patterns in the model errors. Fuentes and Raftery (2001)

model the ‘‘true’’ process of air pollutants, the observa-

tions and CMAQ output process as jointly Gaussian

random fields. They estimate the parameters for the bias

of the CMAQ output, the parameters for the covariance

structure of CMAQ and observation error processes and

simulate the conditional distribution of the ‘‘true’’
d.
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process given CMAQ output and the observations. This

approach is attractive in principle but requires a number

of strong assumptions about the statistical character-

istics of the processes. Meiring et al. (1998) compares an

air quality model with observations by temporal pre-

whitening and spatial deformation. Haas (1998) evalu-

ates meteorological pollutant transport and deposition

models through a Monte Carlo hypothesis test.

In this paper, we suggest new ways of comparing

CMAQ output to observations that assess CMAQ’s

ability to capture dynamic aspects of the process

accurately. Sampson and Guttorp (1999) point out the

necessity of comparing the space–time correlation

structure of observations and numerical model output

in the evaluation of numerical models, but there has not

been much work done in this regard. The methodology

used in Fuentes and Raftery (2001) only applies to

spatial processes at a fixed time point, so evaluation of

the dynamic aspect of CMAQ is not possible. Meiring

et al. (1998) and Haas (1998) do consider air quality

models in a space–time context, but neither is intended

to evaluate the dynamic behavior nor the space–time

correlation structure of the physical model output.

One important aspect of space–time correlations of

atmospheric processes on the time-scale of days is that

they are likely to be asymmetric in space–time in the

sense that the correlation between site A today and site

B tomorrow will often be different than the correlation

between site B today and site A tomorrow. For example,

Gneiting (2002) finds such an asymmetry in daily wind

speeds in Ireland. We suggest ways of assessing the

performance of CMAQ with regard to its dynamic

behavior by looking at correlations over different spatial

locations at different time points. We also suggest

examining correlations of various linear combinations

of observations or CMAQ output to understand the

structure of space–time correlation of each process.

Meiring et al. (1998) and Haas (1998) require developing

a complete spatial or spatial–temporal stochastic model

for the process under study, which we do not require.

Our methods give researchers new tools to assess the fits

of models such as those described in Meiring et al.

(1998) and Haas (1998), and thus provide an important

complement to these more model-based approaches.
2. Data

We have daily averages from the Eulerian Model

Evaluation Field Study (EMEFS) and CMAQ output of

the ambient concentration of aerosol sulfate in mg m�3

over the eastern United States and parts of Canada from

March 1990 through May 1990. These data were

provided by the US EPA. For a detailed description of

EMEFS, see McNaughton and Vet (1996). The ob-

servations and CMAQ output used for the analysis in
this paper are available at http://galton.uchicago.edu/

~stein/corr/. There is a total of 61 monitoring stations

over the whole region. Their locations are given in

Fig. 1. This period is especially useful for this study

because of intensive monitoring undertaken during

EMEFS. For example, Fig. 1 shows two clusters of

monitoring stations that only operated during this period.

Since CMAQ output is averaged over large square

blocks and observations are effectively averages over

much smaller regions, CMAQ output and observations

have a mismatch of support. We ignore this problem

here and act as if the CMAQ output is point-valued. We

believe this simplification is reasonable because it is

known that the concentration of sulfate generally varies

fairly smoothly in space compared to that of SO2 or

NOx: The reason for this is that the conversion rates of
SO2 (gas and aqueous phase combined) to sulfate gives

SO2 a lifetime of 2–4 days (Warneck, 1999), so that SO2
has sufficient time to mix well regionally and thus

produces relatively smooth sulfate aerosol distributions

in space and time. We can give a quantitative assessment

of the greater smoothness of sulfate aerosol through the

spatial variogram (definition and explicit expression are

given in Appendix A) using CMAQ output. The spatial

variogram values of sulfate aerosol and SO2 concentra-

tion at spatial lag 36 km divided by the square of the

respective mean for each pollutant (to make the

quantities unit-free) are 0.027 and 5.249, respectively.

The values at spatial lag 51 km are 0.051 and 6.698 and

the values at spatial lag 72 km are 0.090 and 7.094,

respectively. This implies that SO2 has much higher (by

about two orders of magnitude) relative spatial variation

at spatial lags under 100 km:
About 7.4% of the sulfate observations during

March–May 1990 are missing. We decided to drop four

stations (station numbers 29, 37, 47 and 49) where more

than 20 days are missing and the missing values happen

over long continuous time periods. This drops the

percentage of missing data to 5.0%: There are of course
no missing values in the CMAQ output.

All of our analyses are on the logarithmic scale, which

has the advantage of making the variances of the

observations and CMAQ output more nearly constant

across space and their distributions more nearly

Gaussian. In addition to the log transformed observa-

tions and CMAQ output processes, we examine the

difference between the log transformed observations and

the log transformed CMAQ output. Hereafter, we will

just say ‘‘observations’’ and ‘‘CMAQ output’’ for the

base 10 logarithms of these quantities and ‘‘CMAQ

error’’ for the difference of these logarithms. Since we

compare the CMAQ output to the observations, we only

use CMAQ output for the locations in Fig. 1 even

though CMAQ output covers the whole domain. Thus,

stations located in the same cell of CMAQ output are

matched to the same CMAQ output values.

http://galton.uchicago.edu/~stein/corr/
http://galton.uchicago.edu/~stein/corr/
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Fig. 1. Location of 61 monitoring stations over the eastern US and Canada. There are two clusters of stations (inside of squares) and

these two clusters are magnified in the two subplots on the right. Stations are numbered 1-61 from west to east. Lines from site 16 show

the bands used in Fig. 4 for that site.
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The focus of this work is on the space–time dynamics

of air pollution. Thus, we are not interested in the fact

that some locations will have consistently higher sulfate

levels than others or in seasonal variations. Fig. 2 shows

that CMAQ does a good job at capturing consistently

higher or lower pollution levels at the various monitor-

ing sites. Sites such as 19, 35, 60 and 61 have lower

values compared to other sites and CMAQ captures this

pattern quite well. There is not much seasonality in our 3

month period, although observations and CMAQ out-

put show a somewhat similar temporal pattern (not

shown). To remove these purely spatial and purely

temporal effects from each process under study, for an

observation at location s and time t; we subtract the
spatial average (the average across time at each site) and

temporal average (the average across space at each

time), see Appendix B for details. These spatial and

temporal averages would also be of interest, for

example, to find evidence for biases in CMAQ, but are

less useful and are, we contend, a distraction when

studying dynamics. One way that we can think about

spatial–temporal processes is to write them as

Zðs; tÞ ¼ mðsÞ þ mðtÞ þ eðs; tÞ; ð1Þ

that is, as an additive effect in space, mðsÞ; an additive
effect in time, mðtÞ; and a space–time interaction, eðs; tÞ:
We believe that comparing the interactions, eðs; tÞ; for
CMAQ output and observations is a better measure of

CMAQ’s ability to capture dynamics than looking

directly at Z: For example, systematic errors in emissions,
which are known to be a serious problem with CMAQ,

are more likely to affect mðsÞ than eðs; tÞ: In computing
the spatial and temporal averages, we imputed values for

the missing observations to reduce biases due to spatial

and temporal patterns in the missing observations. The

details of the imputation procedure are given in Appendix

B. After the removal of spatial and temporal averages,

the imputed values are no longer used and the analyses

are done using only sites and times at which observations

are available. We tried various other approaches to

handling the missing observations in the computation of

spatial and temporal averages, including just using the

available observations, and the results were almost

unchanged. However, the approach to dealing with

missing data may be more critical when the fraction of

missing observations is higher.
3. Spatial variations

Fig. 3(a) shows the spatial variogram (Appendix A)

for the observations, CMAQ output and the CMAQ
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Fig. 2. Comparison of 5%, 50% and 95% percentiles of the temporal distribution of observations and CMAQ output without removal

of spatial and temporal averages.
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error averaged over time. While the variogram for the

observations and CMAQ output are roughly linearly

increasing in distance, the variogram for the CMAQ

error is relatively constant beyond around 600 km: This
implies that there is almost no dependence between

values of CMAQ error farther than 600 km apart, which

suggests that the process of CMAQ error is statistically

simpler than the observations or CMAQ output.

Fig. 3(a) also shows that the variogram of the CMAQ

error is larger than the other two processes at spatial lags

shorter than 700 km or so and smaller at spatial lags

longer than 700 km: This indicates that CMAQ does
better at explaining large-scale variations in observed

levels of sulfate than it does local variations. If CMAQ

output and observations were independent, the vario-

gram of the CMAQ error would be the sum of the

variograms of CMAQ output and observation. Thus,

the ratio, (variogram of the CMAQ error)/(variogram of

CMAQ output þ variogram of observations), is a

sensible measure of how much of the spatial variation of

the observations CMAQ captures. Values of the ratio

o 1 indicate a positive correlation between observations
and CMAQ output, with smaller values indicating

stronger dependence. This ratio is plotted against the

distance lags in Fig. 3(b), which shows that the ratio

(after smoothing) is o 1 at all distances and is
decreasing as distance increases, so that CMAQ captures

an increasing fraction of the spatial variation as distance

increases. Therefore, there is some dependence even at

short lags, but much stronger dependence at larger lags.

Moreover, since we have already subtracted off the
spatial and temporal averages, we can say that CMAQ

captures not only consistently higher or lower pollution

levels in some regions but also more complicated

spatial–temporal patterns of the observations.

For distance lags up to about 200 km; Fig. 3(a) shows
that observations have higher variogram values than

CMAQ output, which may be attributable to block-

averaging of CMAQ output. On the other hand, for lags

longer than 200 km or so, CMAQ output has higher

variogram values than the observations. This implies

CMAQ has more large-scale spatial variation than the

observations. Similarly, the temporal variances of

CMAQ output are higher than the temporal variances

of the observations at most monitoring sites (results not

shown). This larger variation is perhaps a sign of a

problem with CMAQ, since if the model were correct,

one would generally expect the lack of measurement

error and the spatial and temporal averaging of the

model output to produce smaller variations than in the

data.

One approach to simplifying the modeling of the joint

relationship between spatially varying quantities is to

assume separability (Sun et al., 1998); that is, the

covariance function for two spatial processes factors

into a function depending only on space and another

depending only on the indices of the processes. Fig. 3(b)

provides a diagnostic for assessing this assumption.

Specifically, Appendix C shows that separability implies

that the true value of the ratio plotted in Fig. 3(b) is

independent of distance. The clear decrease of the

estimate of this ratio with distance strongly suggests
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that separability is not a tenable assumption for the joint

distribution of observations and CMAQ output.
4. Space–time structure

CMAQ is intended to give an accurate representation

of the dynamics of air pollution. Therefore, it needs to

track the flow of air pollutants with the prevailing winds.

We suggest that simple space–time correlations can be

used to assess how well CMAQ captures the dynamics of

air pollutant processes. There are two different types of

questions we can ask. First, we can ask whether CMAQ

explains the spatial–temporal variation in the observa-

tions. This question can be answered by comparing the

spatial–temporal variations in the observations to those

in the CMAQ error. Second, we can ask if CMAQ

produces sulfate values whose spatial–temporal varia-

tions mimic the kinds of spatial–temporal variations

shown in the observations. This question can be

examined by comparing measures of spatial–temporal

variations in the observations to similar measures in the

CMAQ output. If CMAQ does well with the first

question, it will do well with the second, but the

converse need not hold.

We will assume throughout this section that the

processes we are considering are statistically homoge-

neous in time over the period of study. Let Zaðs; tÞ be the
process of interest with spatial and temporal averages

removed (see Appendix B). Define Dðs1; s2; jÞ ¼
CorðZaðs1; tÞ;Zaðs2; t þ jÞÞ; where Cor indicates correla-
tion and j an integer is the time lag in days. When Za is

the observations or the CMAQ output and there are

predominant winds blowing from s1 to s2; for j positive,

we expect Dðs1; s2; jÞ positive and bigger than

Dðs1; s2;�jÞ: By examining these correlations for differ-
ent spatial locations and values of j for each process, we

can compare the dynamics of the observation process to

that of CMAQ output. The empirical value, bDD; for D is

calculated by

bDDðs1; s2; jÞ

¼
N�1
1

PT�j
i¼1 Zaðs1; iÞ Zaðs2; i þ jÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N�1
2

PT
i¼1Zaðs1; iÞ

2 N�1
3

PT
i¼1Zaðs2; iÞ

2
q ; ð2Þ

where any summand that includes a missing observation

is set to 0. The constants N1; N2; and N3 are the actual

number of available terms in the corresponding sums.

For example, N1 is the number of values of i in the range

1;y;T � j for which Zaðs1; iÞ and Zaðs2; i þ jÞ are both
available.

Fig. 4 compares the empirical space–time correlation

functions bDD for the observations and CMAQ error at
different time lags with respect to the two directions, E-

W and N-S. The average, ð bDDðs1; s2; jÞ þ bDDðs1; s2;�jÞÞ=2;
along with the difference, bDDðs1; s2; jÞ � bDDðs1; s2;�jÞ; is
plotted against the difference of latitude and longitude

(in deg) of s1 and s2: The pairs of spatial locations are
selected so that the difference of longitude or latitude

of the two locations has an angular restriction. For

example, for the plot with respect to the latitude

difference, we restrict jlon 1� lon 2jo1
8
jlat 1� lat 2j to
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get meridional ‘‘bands’’, where lon i and lat i denote the

longitude and latitude of si; i ¼ 1; 2: For the plot with
respect to the longitude difference, we give a similar

restriction with lon i and lat i switched. Fig. 1 illustrates

the meridional and zonal ‘‘bands’’ for site 16. There are

82 pairs of sites that fall in the meridional bands and 127

pairs in the zonal bands. Since Dðs1; s2; jÞ ¼ Dðs2; s1;�jÞ;
we set s1 to be always north of s2 for the plot with

respect to latitude difference and s1 to be east of s2 for

the plot with respect to longitude difference.

The middle column in Fig. 4 shows clear evidence of

asymmetry in the correlation for sites in a zonal band.
Most of the triangles, which plot values of bDDðs1; s2; jÞ �bDDðs1; s2;�jÞ; are below 0 for time lags 1, 2 and 3. This
implies that there is a flow from west to east, since s1 is

located east of s2: For j ¼ 2; the largest negative
differences are at larger longitude differences than when

j ¼ 1: This again shows the movement of the air flow
from west to east. The left column in Fig. 4 shows at best

a weak asymmetry indicating a flow from south to

north.

If CMAQ is capturing the dynamics of air pollutant

processes correctly, the space–time asymmetry should

not show up in the correlation pictures of the CMAQ
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error. The right column of Fig. 4 shows that there

remains some degree of asymmetry for the CMAQ error

for a time lag of one day. The migration of the largest

negative differences to a larger longitude difference as

time lag increases from j ¼ 1 to j ¼ 2 is even clearer than
in the correlation plot of observations. However, in

contrast to the results for the observations, we see hardly

any asymmetry in the CMAQ error for a time lag of two

days up to the longitude difference around 9�: This
indicates that CMAQ does a reasonable job of capturing

dynamic effects on time scales longer than one day.

Furthermore, the spatial correlations for the CMAQ

error decrease to zero much faster than the spatial

correlations of the observations and the level of space–

time correlations with respect to each time lag for the

CMAQ error is fairly low compared to the observations.

These findings again show that it should be easier to

develop statistical models for the CMAQ error than for

the process itself.

For further evaluation of CMAQ, we suggest

comparing correlations of linear combinations of the

processes. We specifically consider the spatial correla-

tion of temporal differences,

STðs1; s2; jÞ ¼CorðZaðs1; tÞ � Zaðs1; t þ jÞ;

Zaðs2; tÞ � Zaðs2; t þ jÞÞ; ð3Þ

and the temporal correlation of spatial differences,

TSðs1; s2; jÞ ¼CorðZaðs1; tÞ � Zaðs2; tÞ;

Zaðs1; t þ jÞ � Zaðs2; t þ jÞÞ:

The idea behind looking at ST and TS correlations is

to focus on space–time interactions (the eðs; tÞ term in
Eq. (1)). Statistics such as the space–time correlation

function or space–time variogram of the unfiltered

processes, because they are affected by temporal or

spatial averages, describe some mixture of the various

terms in Eq. (1). The ST and TS correlations of the

filtered processes are two simple summary statistics that

focus on the joint variation of the eðs; tÞ process over
space and time. Other statistics would also have this

property and could be worth considering. The ST and

TS correlations are estimated using estimates analogous

to Eq. (2) for D:
We can compare the ST and TS correlations for the

observations and CMAQ output processes to check how

the covariance structure of the processes match. We are

interested in how each correlation varies as the distance

between s1 and s2 or the time lag j changes. Fig. 5

compares the values of the empirical space–time

correlations cSTST and cTSTS for the observations, CMAQ
output and the CMAQ error. We see that these

correlations for the observations and CMAQ output

are not so different. In the top row of Fig. 5, note that

the ST correlations for CMAQ error are nearly zero

after 500 km or so while the correlations for both
observations and CMAQ output are noticeably negative

from about 600 km to 2000 km: The bottom row of
Fig. 5 shows that the TS correlations of the CMAQ

error do not increase nearly as strongly with distance as

those of the observations. In particular, for j ¼ 2; the TS
correlations for the CMAQ error are nearly 0 but are

clearly positive for the observations. Both ST and TS

correlations show the greater simplicity of the space–

time correlations of CMAQ error compared to those of

the observations, which indicates that CMAQ is

capturing much of the pattern in the original process

properly.

We showed earlier that separability was not a tenable

assumption for describing the joint distribution of

observations and CMAQ output. Separability has also

been used as a simplifying assumption about space–time

covariance functions (Posa, 1993; Haas, 1995; Mitchell

and Gumpertz, 2003). In the space–time context,

separability means that the covariance function factors

into a function depending only on space and another

depending only on time. In Appendix C, we show that

space–time separability implies that STðs1; s2; jÞ is
independent of j and that TSðs1; s2; jÞ is independent of
s1 and s2: The bottom row of Fig. 5 clearly shows that
separability is violated for the observations and CMAQ

output. The violation of space–time separability is not

so clearcut for the CMAQ error, but that is only because

all of the TS correlations are weak.
5. Discussion

There are some subtle issues in the probabilistic

interpretation of the output from deterministic models

such as CMAQ. Some authors consider deterministic

model output as the expected value of a spatial–

temporal stochastic process (see Lamb, 1980). However,

statistical analysis of output from General Circulation

Model (GCM) has a long history (see Chapters 8 and 9

of von Storch and Navarra (1995) and the references

therein) and those models are deterministic. Fuentes

et al. (2003) describe statistical analysis of the output of

computer models, including air pollution models.

Whether or not one is willing to make formal

probability statements about the output of a determi-

nistic computer model, it seems to us useful to assess the

ability of such a model to produce spatial–temporal

variations similar to those found in observations as a

way of judging the realism of the computer model.

We have shown that the directional flows in sulfate

concentrations can be seen in the asymmetry of space–

time correlations over a scale of a few days and this

asymmetry is only partially captured by CMAQ.

Therefore, even when modeling just the CMAQ error,

we need to include this asymmetry in any complete

statistical model. Nevertheless, we have pointed out a
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Fig. 5. Top: plot of cSTSTðs1; s2; jÞ with respect to the distance between s1 and s2 for j ¼ 1; 2; 3 (left to right). The dark symbols are binned
averages as in Fig. 2. For improved legibility, 2=3 of the correlations have been randomly deleted. Bottom: plot of cTSTSðs1; s2; jÞ with
respect to the distance between s1 and s2 for j ¼ 1; 2; 3 (left to right). The dark symbols are binned averages as in Fig. 2.

M. Jun, M.L. Stein / Atmospheric Environment 38 (2004) 4427–44364434
number of instances in which statistical modeling of the

correlation structure of the CMAQ error is simpler than

that of the observations or CMAQ output. Thus, even

though CMAQ output is substantially different from

the observations, CMAQ does capture much of the

dynamics of the ‘‘true’’ process, so the CMAQ error

should be somewhat easier to model statistically. If our

goal is to produce a space–time map of sulfate

distribution at the resolution of CMAQ output based

on the observations and CMAQ output using a

statistical model, then because the CMAQ output is

known everywhere, we only need to model the

differences of the observations and CMAQ output, not

the observation and CMAQ output jointly as in Fuentes

and Raftery (2001). This approach is similar in spirit to

treating the CMAQ output as the mean function for the

observed process. We can then produce a sulfate map by

adding an interpolated map of the difference field to the

CMAQ output. To carry this out, we would have to

interpolate the spatial average of the CMAQ error,

interpolate the CMAQ error with spatial average

removed, and then add these interpolated surfaces to
the CMAQ output. As Fig. 2 shows, the spatial average

of the CMAQ error does not show much variation, so

that the exact method of the interpolation of this field

will not have a large impact on the final map. We can

avoid interpolating the temporal average by including

an unknown constant mean for each day and using best

linear unbiased prediction (see p. 163 of Cressie (1993))

of the CMAQ error with spatial averages removed.

Since the flow of air pollutants is highly related to the

wind movement, it would make sense to incorporate the

wind information when we model the space–time

process of air pollutants. One possible way that we plan

to explore in future work is to allow the space–time

covariances to depend explicitly on winds (Kaiser et al.,

2002).

In producing a space–time map of air pollutant levels

by combining observations and CMAQ output, data

assimilation may be a very powerful methodology. Some

recent efforts in this direction have been made such as

Sandu et al. (2003), but for air quality models of the

complexity of CMAQ, no operational data assimilation

schemes are available at present. When operational data
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assimilation schemes become available for CMAQ, it

will certainly be useful to compare the results with the

more empirical and simpler approach we propose.
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Appendix A

For a spatial process fZðsÞ; sADg; if VarðZðsþ hÞ �
ZðsÞÞ depends only on h; then define the spatial
variogram gðhÞ by

gðhÞ ¼ 1
2
VarðZðsþ hÞ � ZðsÞÞ:

If the process is stationary with covariance function

KðhÞ ¼ CovðZðsþ hÞ;ZðsÞÞ; then gðhÞ ¼ Kð0Þ � KðhÞ:
The classical estimator of the spatial variogram is

#gðhÞ ¼
1

2jNðhÞj

X
jNðhÞj

ðZðsiÞ � ZðsjÞÞ
2;

where jNðhÞj is the number of pairs of spatial locations
ðsi; sjÞ for which si � sj ¼ h (see Cressie (1993) and Chilès

and Delfiner (1999) for more details).

If we do not use bins and calculate variogram values

at every pair of spatial locations, the resulting plot is

called a variogram cloud. It can be written as #gðjsi �
sj jÞ ¼ 1

2
ðZðsiÞ � ZðsjÞÞ

2:
For a space–time process Zðs; tÞ; the spatial variogram

is calculated in a similar way. The spatial variogram in

this paper is, for each pair of sites si and sj ; just one-half
the average over time of the squared spatial increments:

#gðjsi � sj jÞ ¼
1

2nij

X
tATij

ðZaðsi; tÞ � Zaðsj ; tÞÞ
2:

Za is spatial and temporal average adjusted process from

Z (for details, see Appendix B). Tij denotes the set of

time points that Zaðsi; tÞ and Zaðsj ; tÞ are available and
nij denotes the number of time points in Tij :
Appendix B

Suppose Zðs0; t0Þ is missing. Purely for purposes of
computing spatial and temporal averages, this space–

time value is imputed with the value from the nearest

spatial point and the same time point with a mean

adjustment. Specifically, for *s the nearest spatial location to

s0 such that Zð*s; t0Þ is not missing, we replace the missing
value with Zð*s; t0Þ þ Nðs0Þ

�1P
iATðs0ÞZðs0; iÞ � Nð*sÞ�1P

iATð*sÞ Zð*s; iÞ; where Tðs0Þ denotes the set of time points
for which Zðs0; tÞ is observed and Nðs0Þ denotes the
number of such observations.

Using the imputed observations, we estimate the

interaction term eðs; tÞ in Eq. (1) by

Zaðs; tÞ ¼Zðs; tÞ �
1

T

XT

j¼1

Zðs; jÞ �
1

S

XS

i¼1

Zðsi; tÞ

þ
1

TS

X
i;j

Zðsi; jÞ:
Appendix C

Suppose we have a process Z depending on two

indices s and i: Here, we have in mind that s indicates
space and i could indicate either time or the component

of a vector. For example, i ¼ 1 could indicate observed
sulfate and i ¼ 2 CMAQ modeled sulfate. If

CovðZðs1; i1Þ;Zðs2; i2ÞÞ ¼Kðs1; s2; i1; i2Þ

¼Lðs1; s2ÞMði1; i2Þ

then, we will say that the covariance function for Z is

separable in its indices.

Under separability, we have

CovðZðs1; i1Þ � Zðs2; i1Þ;Zðs1; i2Þ � Zðs2; i2ÞÞ

¼ Kðs1; s1; i1; i2Þ � Kðs1; s2; i1; i2Þ

� Kðs2; s1; i1; i2Þ þ Kðs2; s2; i1; i2Þ

¼ ðLðs1; s1Þ � Lðs1; s2Þ � Lðs2; s1Þ þ Lðs2; s2ÞÞMði1; i2Þ:

Therefore, for k ¼ 1; 2;

VarðZðs1; ikÞ � Zðs2; ikÞÞ

¼ ðLðs1; s1Þ � Lðs1; s2Þ � Lðs2; s1Þ þ Lðs2; s2ÞÞMðik; ikÞ:

Setting i1=‘‘observations’’, i2=‘‘CMAQ output’’ and

i3=‘‘CMAQ error’’ and fixing the time, the ratio of

variogram of the CMAQ error and sum of variograms

of CMAQ output and observations for fixed time point

under separability,

VarðZðs1; i3Þ � Zðs2; i3ÞÞ
VarðZðs1; i1Þ � Zðs2; i1ÞÞ þ VarðZðs1; i2Þ � Zðs2; i2ÞÞ

¼
Mði1; i1Þ þ Mði2; i2Þ � 2Mði1; i2Þ

Mði1; i1Þ þ Mði2; i2Þ
:
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This is independent of s1 and s2 for each fixed time

point.

Similarly, for ST in Eq. (3), it is possible to show

STðs1; s2; jÞ ¼ Lðs1; s2Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lðs1; s1ÞLðs2; s2Þ

p
; which is inde-

pendent of t and j:
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