1. Measures of central tendency

1.1 Mean

- Let \(x \) denote variable of interest, \(n \) the sample size, and \(x_i \) the \(i^{th} \) observation, \(i = 1, \ldots, n \).
- The sample mean (or \(x \)-bar) is
 \[
 \bar{x} = \frac{1}{n} \sum x_i
 \]
 e.g. p. 39. \(x = \text{FEV} \) (forced expiration volume)
 \[
 \bar{x} = \frac{(x_1 + \cdots + x_{13})}{13} = \frac{(2.30 + \cdots + 3.38)}{13} = 2.95
 \]
- If \(x \) is dichotomous, let 1 represent "success" and 0 a "failure".
 Then \(\bar{x} \) = proportion of successes, \(p \)
 e.g. p. 40. \(p = 0.615 \) male

Notes: 1) mean is sensitive to outliers
 2) the mean of a population is denoted \(\mu \).

1.2 Median

- Median, denoted \(M \), is the “middle” value in ordered data. Let data be ordered from low to high.
 If \(n \) is odd, \(M \) is the middle value, i.e. the \((n+1)/2 \) largest value.
 If \(n \) is even, \(M \) is the average of the middle two,
 \[
 M = \left[\frac{n}{2} \text{obs} + \left(\frac{n}{2} + 1 \right) \text{obs} \right] / 2
 \]
 e.g. ordered FEV data, \(n = 13 \).
 2.15, 2.25, 2.30, 2.60, 2.68, 2.75, 2.82, 2.85, 3.00, 3.38, 3.50, 4.02, 4.05
 \(M = \)
 - Median is resistant to outliers, i.e. it's "robust"

1.3 Mode

- Mode is the value that occurs most frequently. If there are two peak frequencies, the data are bimodal, if more its multimodal.
2. Measures of dispersion

2.1 Range

- Range is difference between the largest and the smallest observation.
 e.g. for FEV, range = 4.05 - 2.15 = 1.90 liters
 sulphur dioxide summary on p. 45

- It is very sensitive to extreme observations.

2.2 Interquartile range, IQR.

- Recall that quantiles divide the data into quarters. There are several different procedures for finding them. The book (P&G) defines the k^{th} percentile, denoted P_k, as follows:

 1) order the data
 2) if $nk/100$ is an integer,
 $$P_k = [(nk/100)\, obs + (nk/100+1)\, obs]/2$$
 3) if $nk/100$ is not an integer, find integer j just less than $nk/100$.
 $$P_k = (j+1)\, \text{observation}.$$

- The first and third quantiles are
 $$Q_1 = P_{25} \quad Q_3 = P_{75}.$$
 e.g. FEV data
 2.15, 2.25, 2.30, 2.60, 2.68, 2.75, 2.82, 2.85, 3.00, 3.38, 3.50, 4.02, 4.05
 for $k = 25$, $nk/100 = (13)(25)/100 = 3.25$
 hence $j = 3$ and $Q_1 = P_{25} = 4^{th} \, obs = 2.60$
 for $k = 75$, $nk/100 = 9.75$
 hence $j = 9$ and $Q_3 = P_{75} = 10^{th} \, obs = 3.38$.

- The interquartile range is
 $$\text{IQR} = Q_3 - Q_1.$$
 e.g.
 \[
 \text{IQR} = 3.38 - 2.60 = 0.78 \, \text{liters}.
 \]

- The IQR is an excellent descriptive tool, i.e. range of middle 50% of data. However, it is not widely used in statistical inference.
2.3 Variance and standard deviation

- Consider the 'deviation' of an observation from the mean, i.e. the i^{th} deviation is

$$d_i = x_i - \bar{x}$$

We could show that $\sum d_i = 0$.

- Therefore, let’s use squared deviations. The variance, s^2, is defined to be the "average" squared deviation, i.e.

$$s^2 = \frac{\sum (x_i - \bar{x})^2}{n-1}$$

The reason for dividing by $(n-1)$ rather than n will be clearer later. e.g. for FEV data.

- The formula above is often called the definitional formula. An equivalent computational formula given in most basic texts is

$$s^2 = \frac{\sum x^2 - n\bar{x}^2}{n-1}$$

or

$$s^2 = \frac{\sum x^2 - (\sum x)^2 / n}{n-1}$$

- Variance is in squared units. The standard deviation, s, is the square root of the variance.

 e.g. for FEV $s = \sqrt{0.39} = 0.62$ liters.

 The standard deviation will be given some intuitive interpretation in the next section.

- Notes:
 1) the variance and standard deviation for populations are denoted as σ^2 and σ.
 2) both measures are sensitive to outliers
 3) both s^2 and s will be widely used subsequently in statistical inference.
3. Coefficient of variation

- It may not make sense to compare s across samples from different populations. Such comparisons may be made using the coefficient of variation, defined as

$$CV = \frac{s}{\bar{x}} \times 100\%$$

This is also known as the "relative variability".

- The CV is not used for statistical inference. However, it's an easy measure for experimenters to understand, and is used frequently.

4. Grouped data (read)

- If data are grouped in a grouped frequency table, the midpoints, denoted m_i, of the class intervals are used to represent the individual points. Formulas for the grouped mean and variance are available.

5. Chebychev's inequality and the empirical rule

- When the data are roughly symmetric (i.e. not badly skewed) and unimodal, (which conditions are often true) the empirical rule states that:
 1) about 67% of obs are in interval $\bar{x} \pm s$
 2) about 95% of obs are in interval $\bar{x} \pm 2s$
 3) about 99.7% (i.e. almost all) of obs are in interval $\bar{x} \pm 3s$.

 e.g. for FEV, the interval $\bar{x} \pm s$ is 2.95 ± 0.62 or $(2.33, 3.57)$, which contains 8 of 13, or 62% of obs. The interval $\bar{x} \pm 2s$ or $(1.71, 4.19)$ contains 100% of data.

- A more general rule which applies to any distribution is the Chebychev inequality which states that, for $k > 1$, at least $(1 - k^{-2})$ of observations are within k standard deviations of the mean.
e.g. let $k = 2$. Then at least $(1 - \frac{1}{4}) = .75$ of obs are in interval $\bar{x} \pm 2s$. For FEV data, the interval contains 100% of data, hence the rule is true in that case.

6. Further Applications (read. This has nice examples)