1. (20 points) Given regression data y and X where X is $(n \times m)$ and least squares estimates $\hat{\beta}$, write a Fortran double precision function called SSR that calculates the sum of squares of residuals. You are not allowed to use any arrays other than y, X, and betah.

2. (10 points) What is the smallest number of multiplications and additions needed to multiply a lower triangular matrix L times an upper triangular matrix U?

3. (10 points) Express 735 as an integer*2 and -537 as a real*4

4. (15 points) What would be printed by the following Fortran program?

   ```fortran
   dimension x(20,5),xtx(5,5)
   n=10
   m=2
   do 5 i=1,20
     do 5 j=1,5
       5 x(i,j)=0.
   do 10 i=1,n
     x(i,1)=1
   10 x(i,2)=i
   call xtx(x,n,m,xtx)
   do 20 i=1,m
   20 write(*,30) (xtx(i,j),j=1,m)
   stop
end
subroutine xtx(x,n,m,xtx)
   dimension x(n,m),xtx(m,m)
   do 10 i=1,m
     do 10 j=1,i
       c=0.0
     20 c=c+x(k,i)*x(k,j)
     xtx(i,j)=c
   10 xtx(j,i)=c
   return
end
```

5. (20 points) Show that sweeping an $(n \times n)$ matrix A twice in a row on its kth diagonal gives A back again.
6. (10 points) Given a N(0,1) random number generator, how would you generate a random sample of size n from a χ^2_m population? How about from an F_{m_1,m_2}?

7. (15 points) What is the probability that a random point in the unit square is also in the unit circle? Use this to design a simulation that estimates π by generating points in the unit square. How many points would you have to generate to be 95% sure that your estimate is within 0.01 of the true value?