Hierarchical Bayesian modeling

Tom Loredo
Cornell Center for Astrophysics and Planetary Science
http://www.astro.cornell.edu/staff/loredo/bayes/

SAMSI ASTRO — 19 Oct 2016
1970 baseball averages

Efron & Morris looked at batting averages of baseball players who had $N = 45$ at-bats in May 1970 — ‘large’ N & includes Roberto Clemente (outlier!)

Red = n/N maximum likelihood estimates of true averages
Blue = Remainder of season, $N_{rmdr} \approx 9N$

\begin{center}
\begin{tikzpicture}
 \fill[cyan, opacity=0.2] (0.265, 0.2) rectangle (0.3, 0.4);
 \draw[->, cyan] (0.265, 0.2) -- (0.265, 0.4);
 \node at (0.265, 0.3) {Early season};
 \node at (0.265, 0.27) {Shrinkage};
 \node at (0.3, 0.3) {RMSE = 0.148};
 \node at (0.265, 0.2) {RMSE = 0.277};
\end{tikzpicture}
\end{center}

Cyan = James-Stein estimator: nonlinear, correlated, biased
But *better*!
Theorem (independent Gaussian setting): In dimension $d > 3$, shrinkage estimators always beat independent MLEs in terms of expected RMS error.

"The single most striking result of post-World War II statistical theory" — Brad Efron

Lines show closer estimate
Shrinkage closer 15/18
Theorem (independent Gaussian setting): In dimension ≥ 3, shrinkage estimators always beat independent MLEs in terms of expected RMS error.

“The single most striking result of post-World War II statistical theory”
— Brad Efron
All 18 players are *humans playing baseball*—they are members of a population, not arbitrary, unrelated binomial random number generators!

In the absence of data about player i, we may use the performance of the other players to guide a guess about that player’s performance—they provide *indirect evidence* (Efron) about player i

But information that is relevant in the absence of data for i remains relevant when we additionally obtain that data; shrinkage estimators account for this

There is “mustering and *borrowing of strength*” (Tukey) across the population

Hierarchical Bayesian modeling is the most flexible framework for generalizing this lesson; *empirical Bayes* is an approximate version with a straightforward frequentist interpretation
Agenda

1 Basic Bayes recap

2 Key idea in a nutshell

3 Going deeper
 Joint distributions and DAGs
 Conditional dependence/independence
 Example: Binomial prediction
 Beta-binomial model
 Point estimation and shrinkage
 Gamma-Poisson model & Stan
 Algorithms
Bayesian inference in one slide

Probability as generalized logic

Probability quantifies the *strength of arguments*

To appraise hypotheses, calculate probabilities for arguments from data and modeling assumptions to each hypothesis

Use *all* of probability theory for this

Bayes’s theorem

\[p(\text{Hypothesis} \mid \text{Data}) \propto p(\text{Hypothesis}) \times p(\text{Data} \mid \text{Hypothesis}) \]

Data *change* the support for a hypothesis \(\propto \) ability of hypothesis to *predict* the data

Law of total probability

\[p(\text{Hypotheses} \mid \text{Data}) = \sum p(\text{Hypothesis} \mid \text{Data}) \]

The support for a *compound/composite* hypothesis must account for all the ways it could be true
Bayes’s theorem

\(\mathcal{C} = \text{context, initial set of premises} \)

Consider \(P(H_i, D_{\text{obs}} | \mathcal{C}) \) using the product rule:

\[
P(H_i, D_{\text{obs}} | \mathcal{C}) = P(H_i | \mathcal{C}) P(D_{\text{obs}} | H_i, \mathcal{C})
= P(D_{\text{obs}} | \mathcal{C}) P(H_i | D_{\text{obs}}, \mathcal{C})
\]

Solve for the \textit{posterior probability} (expands the premises!):

\[
P(H_i | D_{\text{obs}}, \mathcal{C}) = P(H_i | \mathcal{C}) \frac{P(D_{\text{obs}} | H_i, \mathcal{C})}{P(D_{\text{obs}} | \mathcal{C})}
\]

Theorem holds for any propositions, but for hypotheses & data the factors have names:

\[\text{posterior} \propto \text{prior} \times \text{likelihood}\]

norm. const. \(P(D_{\text{obs}} | \mathcal{C}) = \text{prior predictive} \)
Law of Total Probability (LTP)

Consider exclusive, exhaustive \(\{B_i\} \) (\(C \) asserts one of them must be true),

\[
\sum_i P(A, B_i | C) = \sum_i P(B_i | A, C)P(A | C) = P(A | C)
\]

\[
= \sum_i P(B_i | C)P(A | B_i, C)
\]

If we do not see how to get \(P(A | P) \) directly, we can find a set \(\{B_i\} \) and use it as a “basis”—extend the conversation:

\[
P(A | C) = \sum_i P(B_i | C)P(A | B_i, C)
\]

If our problem already has \(B_i \) in it, we can use LTP to get \(P(A | C) \) from the joint probabilities—*marginalization*:

\[
P(A | C) = \sum_i P(A, B_i | C)
\]
Example: Take $A = D_{\text{obs}}$, $B_i = H_i$; then

$$P(D_{\text{obs}}|C) = \sum_i P(D_{\text{obs}}, H_i|C)$$

$$= \sum_i P(H_i|C) P(D_{\text{obs}}|H_i, C)$$

prior predictive for $D_{\text{obs}} = \text{Average likelihood for } H_i$
(a.k.a. *marginal likelihood*)
Parameter Estimation

Problem statement

\(\mathcal{C} = \text{Model } M \text{ with parameters } \theta \text{ (+ any add’l info)} \)

\(H_i = \text{statements about } \theta; \text{ e.g. } “\theta \in [2.5, 3.5],” \text{ or } “\theta > 0” \)

Probability for any such statement can be found using a probability density function (PDF) for \(\theta \):

\[
P(\theta \in [\theta, \theta + d\theta] | \cdots) = f(\theta) d\theta
\]

\[
= p(\theta | \cdots) d\theta
\]

Posterior probability density

\[
p(\theta | D, M) = \frac{p(\theta | M) \mathcal{L}(\theta)}{\int d\theta \ p(\theta | M) \mathcal{L}(\theta)}
\]
Summaries of posterior

- “Best fit” values:
 - Mode, \(\hat{\theta} \), maximizes \(p(\theta|D, M) \)
 - Posterior mean, \(\langle \theta \rangle = \int d\theta \theta p(\theta|D, M) \)

- Uncertainties:
 - Credible region \(\Delta \) of probability \(C \):
 \[
 C = P(\theta \in \Delta|D, M) = \int_{\Delta} d\theta p(\theta|D, M)
 \]
 - Highest Posterior Density (HPD) region has \(p(\theta|D, M) \) higher inside than outside
 - Posterior standard deviation, variance, covariances

- Marginal distributions
 - Interesting parameters \(\phi \), nuisance parameters \(\eta \)
 - Marginal dist’n for \(\phi \): \(p(\phi|D, M) = \int d\eta p(\phi, \eta|D, M) \)
Many Roles for Marginalization

Eliminate nuisance parameters

\[p(\phi|D, M) = \int d\eta \ p(\phi, \eta|D, M) \]

Propagate uncertainty

Model has parameters \(\theta \); what can we infer about \(F = f(\theta) \)?

\[p(F|D, M) = \int d\theta \ p(F, \theta|D, M) = \int d\theta \ p(\theta|D, M) \ p(F|\theta, M) \]

\[= \int d\theta \ p(\theta|D, M) \ \delta[F - f(\theta)] \quad \text{[single-valued case]} \]

Prediction

Given a model with parameters \(\theta \) and present data \(D \), predict future data \(D' \) (e.g., for experimental design):

\[p(D'|D, M) = \int d\theta \ p(D', \theta|D, M) = \int d\theta \ p(\theta|D, M) \ p(D'|\theta, M) \]
Model comparison

Marginal likelihood for model M_i:

$$Z_i \equiv p(D|M_i) = \int d\theta_i \ p(\theta_i|M) \ L_i(\theta_i)$$

Bayes factor $B_{ij} \equiv Z_i/Z_j$

Can write $Z_i = L_i(\hat{\theta}_i) \cdot \Omega_i$ with Ockham factor

$$\Omega_i \approx \delta\theta/\Delta\theta = \text{(posterior volume)}/\text{(prior volume)}$$

Hierarchical modeling, aka...

- Graphical models — Hierarchical and other structures
- Multilevel models — In regression, linear model settings
- Bayesian networks (Bayes nets) — In AI/ML settings
Agenda

1. Basic Bayes recap

2. Key idea in a nutshell

3. Going deeper
 - Joint distributions and DAGs
 - Conditional dependence/independence
 - Example: Binomial prediction
 - Beta-binomial model
 - Point estimation and shrinkage
 - Gamma-Poisson model & Stan
 - Algorithms
Motivation: Measurement error in surveys

BATSE GRB peak flux estimates

- **Selection effects** (truncation, censoring) — *obvious* (usually)
 Typically treated by “correcting” data
 Most sophisticated: product-limit estimators

- **“Scatter” effects** (measurement error, etc.) — *insidious*
 Typically ignored (average out??? — *No!*)
Suppose $f(x|\theta)$ is a distribution for an observable, x (scalar or vector, $\vec{x} = (x, y, \ldots)$); and θ is unknown.

From N precisely measured samples, $\{x_i\}$, we can infer θ from

\[\mathcal{L}(\theta) \equiv p(\{x_i\}|\theta) = \prod_i f(x_i|\theta) \]

\[p(\theta|\{x_i\}) \propto p(\theta)\mathcal{L}(\theta) = p(\theta, \{x_i\}) \]
But what if the x data are noisy, $D_i = \{x_i + \epsilon_i\}$?

$\{x_i\}$ are now uncertain (latent/hidden/incidental) parameters.

We should somehow incorporate $\ell_i(x_i) = p(D_i|x_i)$

The joint PDF for everything is

$$p(\theta, \{x_i\}, \{D_i\}) = p(\theta) p(\{x_i\}|\theta) p(\{D_i\}|\{x_i\})$$

$$= p(\theta) \prod_i f(x_i|\theta) \ell_i(x_i)$$

The conditional (posterior) PDF for the unknowns is

$$p(\theta, \{x_i\}|\{D_i\}) = \frac{p(\theta, \{x_i\}, \{D_i\})}{p(\{D_i\})} \propto p(\theta, \{x_i\}, \{D_i\})$$
\[
p(\theta, \{x_i\}|\{D_i\}) \propto p(\theta, \{x_i\}, \{D_i\}) \\
= p(\theta) \prod_i f(x_i|\theta) \ell_i(x_i)
\]

Marginalize over \(\{x_i\}\) **to summarize inferences for** \(\theta\)

Marginalize over \(\theta\) **to summarize inferences for** \(\{x_i\}\)

Key point: Maximizing over \(x_i\) (i.e., just using best-fit \(\hat{x}_i\)) and integrating over \(x_i\) **can give very different results**!

(See Loredo (2004) for tutorial examples)
To estimate x_1:

$$p(x_1|\{x_2, \ldots \}) = \int d\theta \, p(\theta) f(x_1|\theta) \ell_1(x_1) \times \prod_{i=2}^{N} \int dx_i \, f(x_i|\theta) \ell_i(x_i)$$

$$= \ell_1(x_1) \int d\theta \, p(\theta) f(x_1|\theta) \mathcal{L}_{m,\bar{1}}(\theta)$$

$$\approx \ell_1(x_1) f(x_1|\hat{\theta}_{\bar{1}})$$

with $\hat{\theta}_{\bar{1}}$ determined by the remaining data

$f(x_1|\hat{\theta}_{\bar{1}})$ behaves like a “prior” that shifts the x_1 estimate away from the peak of $\ell_1(x_1)$; each member’s prior depends on all of the rest of the data → shrinkage

[For astronomers: This generalizes the corrections derived by Eddington, Malmquist and Lutz-Kelker (sans selection effects)]
Agenda

1. Basic Bayes recap

2. Key idea in a nutshell

3. Going deeper
 - Joint distributions and DAGs
 - Conditional dependence/independence
 - Example: Binomial prediction
 - Beta-binomial model
 - Point estimation and shrinkage
 - Gamma-Poisson model & Stan
 - Algorithms
Joint and conditional distributions

Bayesian inference is largely about the interplay between *joint* and *conditional* distributions for related quantities.

Ex: Bayes’s theorem relating hypotheses and data ($|\|C\|$):

$$P(H_i|D) = \frac{P(H_i)P(D|H_i)}{P(D)} = \frac{P(H_i,D)}{P(D)} = \text{joint for everything}$$

$$= \frac{P(D)}{\text{marginal for knowns}}$$

The usual form identifies an available factorization of the joint.

Express this via a *directed acyclic graph* (DAG):
Joint distribution structure as a graph

- Graph = *nodes/vertices* connected by *edges/links*
- Circular/square nodes/vertices = a priori uncertain quantities (gray/square = becomes known as data)
- Directed edges specify conditional dependence
- Absence of an edge indicates conditional *independence* → *the most important edges are the missing ones*

\[
P(H_i, D) = P(H_i) \times P(D|H_i)
\]
\[p(x, y, z) \]

\[
p(x)p(y|x)p(z|x, y) \quad p(y)p(x|y)p(z|y, x) \quad p(z)p(x|z)p(y|z, x)
\]

\[
p(x)p(z|x)p(y|x, z) \quad p(y)p(z|y)p(x|y, z) \quad p(z)p(y|z)p(x|z, y)
\]
Cycles not allowed

\[p(x|z) \times p(y|x) \times p(z|y) \]
Conditional independence

Suppose for the problem at hand z is independent of x when y is known:

$$p(z|x, y) = p(z|y)$$

"z is conditionally independent of x, given y": $z \perp \perp x \mid y$

Absence of an edge indicates conditional independence

Missing edges indicate simplification in structure

→ the most important edges are the missing ones
DAGs with missing edges

Conditional independence

\[p(x) p(y|x) p(z|y) \]

\[x \rightarrow y \rightarrow z \]

\[z \perp x \mid y \]

“Causal chain”

\[p(x) p(y|x) p(z|x) \]

\[x \rightarrow y \rightarrow z \]

\[z \perp y \mid x \]

“Common cause”

Conditional dependence

\[p(x) p(y) p(z|x, y) \]

\[x \rightarrow y \rightarrow z \]

“Common effects”
Conditional vs. complete independence

“z is *conditionally* independent of x, given y”

≠

“z is independent of x”

(Complete) independence between z and x (“z ⊥ x”) would imply:

\[p(z|x) = p(z) \] (i.e., not a function of x)

Conditional independence *given y* (“z ⊥ x | y”) is weaker:

\[
\begin{align*}
p(z|x) &= \int dy \ p(z, y|x) \\
&= \int dy \ p(y|x)p(z|x, y) \\
&= \int dy \ p(y|x)p(z|y) \quad \text{since } z \perp x \mid y
\end{align*}
\]

Although \(x \) drops out of the last factor, \(x \) dependence remains in \(p(y|x) \)

\(x \) *does* provide information about \(z \), but it only does so through the information it provides about \(y \) (which directly influences \(z \))
Bayes’s theorem with IID samples

For model with parameters θ predicting data $D = \{x_i\}$ that are IID given θ:

$$p(\theta, D) = p(\theta)p(\{x_i\}|\theta) = p(\theta) \prod_{i=1}^{N} p(x_i|\theta)$$

To find the posterior for the unknowns (θ), divide the joint by the marginal for the knowns ($\{x_i\}$):

$$p(\theta|\{x_i\}) = \frac{p(\theta) \prod_{i=1}^{N} p(x_i|\theta)}{p(\{x_i\})} \quad \text{with} \quad p(\{x_i\}) = \int d\theta \; p(\theta) \prod_{i=1}^{N} p(x_i|\theta)$$
Binomial counts

\[n_1 \text{ heads in } N \text{ flips} \]

\[n_2 \text{ heads in } N \text{ flips} \]

Suppose we know \(n_1 \) and want to predict \(n_2 \).
Predicting binomial counts — known α

Success probability $\alpha \rightarrow p(n|\alpha) = \frac{N!}{n!(N-n)!} \alpha^n (1 - \alpha)^{N-n} \mid N$

Consider two successive runs of $N = 20$ trials, known $\alpha = 0.5$

$p(n_2|n_1, \alpha) = p(n_2|\alpha) \mid N$

n_1 and n_2 are *conditionally independent*
DAG for binomial prediction — known α

Knowing α lets you predict each n_i, independently
Predicting binomial counts — uncertain α

Consider the same setting, but with α uncertain

Outcomes are *physically* independent, but n_1 tells us about $\alpha \rightarrow$ outcomes are *marginally dependent* (see Lec 12 for calculation):

$$p(n_2|n_1, N) = \int d\alpha \, p(\alpha, n_2|n_1, N) = \int d\alpha \, p(\alpha|n_1, N) \, p(n_2|\alpha, N)$$

Flat prior on α

Prior: $\alpha = 0.5 \pm 0.1$
DAG for binomial prediction

\[p(\alpha, n_1, n_2) = p(\alpha)p(n_1|\alpha)p(n_2|\alpha) \]

From joint to conditionals:

\[p(\alpha|n_1, n_2) = \frac{p(\alpha, n_1, n_2)}{p(n_1, n_2)} = \frac{p(\alpha)p(n_1|\alpha)p(n_2|\alpha)}{\int d\alpha \ p(\alpha)p(n_1|\alpha)p(n_2|\alpha)} \]

\[p(n_2|n_1) = \frac{\int d\alpha \ p(\alpha, n_1, n_2)}{p(n_1)} \]

Observing \(n_1 \) lets you learn about \(\alpha \)
Knowledge of \(\alpha \) affects predictions for \(n_2 \) \(\rightarrow \) dependence on \(n_1 \)
A population of coins/flippers

Each flipper+coin flips different number of times

- What do we learn about the population of coins—the distribution of αs?
- How does population membership effect inference for a single coin’s α?
Terminology: θ are hyperparameters, $\pi(\theta)$ is the hyperprior
A simple multilevel model: beta-binomial

Goals:

- Learn a population-level “prior” by pooling data
- Account for population membership in member inferences

Qualitative

\[p(\theta, \{\alpha_i\}, \{n_i\}) = \pi(\theta) \prod_i p(\alpha_i|\theta) \, p(n_i|\alpha_i) \]

\[= \pi(\theta) \prod_i p(\alpha_i|\theta) \, \ell_i(\alpha_i) \]

Quantitative

\[\theta = (a, b) \text{ or } (\mu, \sigma) \]

\[\pi(\theta) = \text{Flat}(\mu, \sigma) \]

\[p(\alpha_i|\theta) = \text{Beta}(\alpha_i|\theta) \]

\[p(n_i|\alpha_i) = \binom{N_i}{n_i} \alpha_i^{n_i} (1 - \alpha_i)^{N_i-n_i} \]
Generating the population & data

- Beta distribution (mean, conc'n)
- Binomial distributions

\[p(n_i | \alpha) \]

\[\alpha = 0.21, \quad N = 80, \quad n = 20 \]
\[\alpha = 0.34, \quad N = 40, \quad n = 16 \]
\[\alpha = 0.36, \quad N = 10, \quad n = 1 \]
\[\alpha = 0.45, \quad N = 20, \quad n = 11 \]
\[\alpha = 0.54, \quad N = 160, \quad n = 79 \]
Likelihood function for one member’s α

$N=20$

$n=11$
Learning the population distribution

\[p(\alpha) \]

\[\mathcal{L}(\alpha_i, p(\alpha_i|D)) \]

\(n=20 \quad N=80 \)
\(n=16 \quad N=40 \)
\(n=1 \quad N=10 \)
\(n=11 \quad N=20 \)
\(n=79 \quad N=160 \)
Lower level estimates

Two approaches

• Hierarchical Bayes (HB): Calculate marginals

\[p(\alpha_j | \{n_i\}) \propto \int d\theta \pi(\theta) \prod_{i \neq j} \int d\alpha_i p(\alpha_i | \theta) p(n_i | \alpha_i) \]

• Empirical Bayes (EB): Plug in an optimum \(\hat{\theta}\) and estimate \(\{\alpha_i\}\)

View as approximation to HB, or a frequentist procedure that estimates a prior from the data
Lower level estimates

Bayesian outlook

- Marginal posteriors are *narrower* than likelihoods
- Point estimates tend to be closer to true values than MLEs (averaged across the population)
- Joint distribution for \(\{\alpha_i\}\) is *dependent*
Frequentist outlook

- Point estimates are biased
- Reduced variance \rightarrow estimates are closer to truth on average (lower MSE in repeated sampling)
- Bias for one member estimate depends on data for all other members

Lingo

- Estimates *shrink* toward prior/population mean
- Estimates “muster and *borrow strength*” across population (Tukey’s phrase); increases accuracy and precision of estimates
- Efron* describes shrinkage as a consequence of accounting for *indirect evidence*

Beware of point estimates!

Population and member estimates

\[p(\alpha) \]

\[
\begin{array}{c}
\text{True} \\
\text{ML} \\
\text{EB pts} \\
\text{EB}
\end{array}
\]

\[\text{RMSE} = 0.096 \]

\[\text{RMSE} = 0.057 \]
Competing data analysis goals

“Shrunken” member estimates provide improved & reliable estimate for population member properties

But they are *under-dispersed* in comparison to the true values \rightarrow not optimal for estimating *population* properties*

No point estimates of member properties are good for all tasks!

We should view population data tables/catalogs as providing *descriptions of member likelihood functions*, not “estimates with errors”

*Louis (1984); Eddington noted this in 1940!
Measurement error perspective

If the data provided *precise* \(\{\alpha_i\} \) values (coin measurements, flip physics), we could easily model them as points drawn from a (beta) population PDF with params \(\theta \):

\[
D = \{\alpha_i\}
\]

\[
p(D|\theta) = \prod_i p(\alpha_i|\theta) = \prod_i \text{Beta}(\alpha_i|\theta)
\]

(A binomial point process)
Here the finite number of flips provide *noisy measurements of each* α_i, described by the member likelihood functions $\ell_i(\alpha_i)$;

$$D = \{n_i\}$$

$$p(D|\theta) = \prod_i \int d\alpha_i \ p(D, \{\alpha_i\}|\theta)$$

$$= \prod_i \int d\alpha_i \ p(\alpha_i|\theta) \ p(n_i|\theta)$$

$$= \prod_i \int d\alpha_i \ \text{Beta}(\alpha_i|\theta) \ \text{Binom}(n_i|\theta)$$

This is a prototype for *measurement error problems*
Another conjugate MLM: Gamma-Poisson

Goal: Learn a rate dist’n from count data
(E.g., learn a star or galaxy brightness dist’n from photon counts)

Qualitative

Quantitative

\[\theta = (\alpha, s) \text{ or } (\mu, \sigma) \]

\[\pi(\theta) = \text{Flat}(\mu, \sigma) \]

\[p(F_i | \theta) = \text{Gamma}(F_i | \theta) \]

\[p(n_i | F_i) = \text{Pois}(n_i | \epsilon_i F_i) \]
Simulations: $N = 60$ sources from gamma with $\langle F \rangle = 100$ and $\sigma_F = 30$; exposures spanning dynamic range of $\times16$
Consider the posterior PDF for θ and $\{\alpha_i\}$ in the beta-binomial MLM:

$$p(\theta, \{\alpha_i\}|\{n_i\}) \propto \pi(\theta) \prod_{i=1}^{N_{\text{mem}}} \text{Beta}(\alpha_i|\theta) \text{Binom}(n_i|\alpha_i)$$

For each member, the $\text{Beta} \times \text{Binom}$ factor is \propto a beta distribution for α_i; but as a function of θ (e.g., (a, b) or (μ, σ)) it is not simple.

The full posterior has a product of N_{mem} such factors specifying its θ dependences \Rightarrow **even for a conjugate model for the lower levels, the overall model is typically analytically intractable**

Two approaches exploit *conditional independence of lower-level parameters*
Member marginalization

- Analytically or numerically integrate over \(\{x_i\} \) to explore the reduced-dimension marginal for \(\theta \) via MCMC:
 \[\{\theta_i\} \sim p(\theta|D) \]

- If \(x_i \) are of interest, sample them from their conditionals, conditioned on \(\theta_i \):
 - Pick a \(\theta \) from \(\{\theta_i\} \)
 - Draw \(\{x_i\} \) by *independent* sampling from their conditionals (given \(\theta \))
 - Iterate

GPUs can accelerate this for application to large datasets

Only useful for low-dimensional latent parameters \(x_i \)
Metropolis-within-Gibbs algorithm

Block the full parameter space:

- Block of m population parameters, θ
- N blocks of lower level (latent) parameters, x_i

Get posterior samples by iterating back and forth between:

- m-D Metropolis-Hastings sampling of θ from $p(\theta|\{x_i\}, D)$

 This requires a problem-specific proposal distribution

- N independent samples of x_i from the conditional $p(x_i|\theta, D_i)$

 This can often exploit conjugate structure

 E.g., Beta-binomial: $\alpha_i \sim \text{Beta}(\alpha_i|\theta) \text{ Binom}(n_i|\alpha_i)$, which is just a Beta for α_i

MWG explicitly displays the feedback between population and member inference