More on Stratified Sampling

Suppose we wish to estimate the population mean μ. First of all, how would we do so using the info from a stratified sample?

Let $\bar{y}_1, \ldots, \bar{y}_L$ be the sample means for the L strata. The appropriate estimator of μ is

$$
\bar{y}_{\text{strata}} = \left(\frac{n_1}{n} \right) \bar{y}_1 + \cdots + \left(\frac{n_L}{n} \right) \bar{y}_L,
$$

where we assume that $n_i/n = N_i/N$ for each strata.

What is the variance of this estimator? Ignoring finite population corrections, the variance is

$$
n^{-1} \left[\left(\frac{n_1}{n} \right) \sigma_1^2 + \cdots + \left(\frac{n_L}{n} \right) \sigma_L^2 \right],
$$

where σ_i^2 is the variance within the ith stratum.
For illustration’s sake, suppose the strata variances are all the same, say σ^2_W, where the W stands for “within.”

In this case the variance of \bar{y}_{strata} is σ^2_W/n.

What is the variance of \bar{y} in a SRS of size n? We know the variance is σ^2/n, but how does this compare with σ^2_W/n?

When all the strata variances are equal to σ^2_W, then

$$\sigma^2 = \sigma^2_W + \left[\frac{N_1}{N} (\mu_1 - \mu)^2 + \cdots + \frac{N_L}{N} (\mu_L - \mu)^2 \right].$$

So, stratified sampling will result in reduced variance in estimating the population mean unless all the strata means are the same.
Potentially, there is a huge reduction in variance. Suppose σ_W is 0. Then we will estimate the population mean exactly with stratified sampling, but the variance of \bar{y} for a SRS will be

$$\frac{1}{n} \left[\left(\frac{N_1}{N} \right) (\mu_1 - \mu)^2 + \cdots + \left(\frac{N_L}{N} \right) (\mu_L - \mu)^2 \right].$$

Stratified sampling and blocking are similar in the following way:

Both strata and blocks should be chosen with the aim of minimizing within strata (or blocks) variation and maximizing between strata (or blocks) variation.