Inference about regression coefficients

Want to infer something about the parameters \(\beta_1, \beta_2, \ldots, \beta_m \). We’ll learn a method of hypothesis testing called the \textit{reduction method}. This method allows one to test the hypothesis that a specified subset of independent variables is not needed in the model.

Let \(B_1 \) denote the subset of regression coefficients not involved in inference, and \(B_2 \) the coefficients about which inference is desired.

For example, suppose we want to test a hypothesis about just \(\beta_1 \). Then \(B_2 = \beta_1 \) and \(B_1 = \{\beta_2, \beta_3, \ldots, \beta_m\} \).
The reduction method allows us to test the hypotheses

\[H_0 : \text{all coefficients in } B_2 \text{ are 0} \]

\[H_1 : \text{at least one coefficient in } B_2 \text{ is not 0}. \]

Now, let \(SSE \) be the error sum of squares for the model that has all \(m \) independent variables in it.

Let \(SSE(B_1) \) be the error sum of squares when only the independent variables associated with \(B_1 \) are in the model.

Define

\[SSR(B_2|B_1) = SSE(B_1) - SSE, \]

which is called the reduction in error sum of squares due to adding the \(B_2 \) variables to a model that has the \(B_1 \) variables in it.
Remarks

• The reduction sum of squares also satisfies

\[SSR(B_2 | B_1) = SSR - SSR(B_1). \]

• It must be true that \(SSR(B_2 | B_1) \geq 0 \). Why?

Let \(m_1 \) and \(m_2 \) be the numbers of parameters in \(B_1 \) and \(B_2 \), respectively. \((m = m_1 + m_2) \)

Now define the \(F \)-statistic

\[F = \frac{SSR(B_2 | B_1) / m_2}{MSE}. \]

At level of significance \(\alpha \), the null hypothesis is rejected if \(F \geq F_{m_2, n-m-1, \alpha} \).
ANOVA Table for Reduction Method

<table>
<thead>
<tr>
<th>Source of variation</th>
<th>SS</th>
<th>df</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_1</td>
<td>$SSR(B_1)$</td>
<td>m_1</td>
</tr>
<tr>
<td>B_2</td>
<td>$SSR(B_2</td>
<td>B_1)$</td>
</tr>
<tr>
<td>Error</td>
<td>SSE</td>
<td>$n - m - 1$</td>
</tr>
<tr>
<td>Total</td>
<td>SST</td>
<td>$n - 1$</td>
</tr>
</tbody>
</table>

(table continued)

<table>
<thead>
<tr>
<th>Source of variation</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_1</td>
<td>$SSR(B_1)/m_1$</td>
<td></td>
</tr>
<tr>
<td>B_2</td>
<td>$SSR(B_2</td>
<td>B_1)/m_2$</td>
</tr>
<tr>
<td>Error</td>
<td>MSE</td>
<td></td>
</tr>
</tbody>
</table>
Examples of using the reduction method

Testing whether or not any variable is useful

\[H_0 : \beta_1 = \beta_2 = \cdots = \beta_m = 0 \]

In this case \(B_1 \) is empty,

\[SSR(B_2|B_1) = SSR, \]

\(m_1 = 0 \) and \(m_2 = m \). The \(F \)-statistic is the one found in the ANOVA table of the SPSS output.

For the L.A. Heart Study data, the \(F \)-statistic is 11.94. If we do the test at level of significance .05, the null hypothesis

\[H_0 : \beta_1 = \beta_2 = \beta_3 = 0 \]

is rejected if \(F \geq F_{3,22,.05} = 3.049 \).

Since 11.94 > 3.049, \(H_0 \) is rejected and we may conclude that at least one of the variables age, weight and cholesterol level have an impact on systolic blood pressure. Note: From SPSS output, \(P \)-value < .0001.
Testing whether a specified variable is useful

\[H_0 : \beta_j = 0 \]

Here \(B_2 \) contains only \(\beta_j \) and \(B_1 \) contains the other \(m-1 \) regression coefficients, and so \(m_1 = m - 1 \) and \(m_2 = 1 \).

The necessary sums of squares may be obtained by fitting two models: (i) the “full” model containing all \(m \) variables, and (ii) a model containing all the variables except the one corresponding to \(\beta_j \).

For the L.A. Heart Study data, suppose we want to test

\[H_0 : \beta_2 = 0, \]

which is equivalent to saying that weight is not needed in the model with age and cholesterol.
Running the model with only age and cholesterol level yields

$$SSR(B_1) = 2419.76042,$$

and so

$$SSR(B_2|B_1) = 3011.99455 - 2419.76042 = 592.23413.$$

We have

$$F = \frac{592.23413}{84.08591} = 7.04.$$

Since this is larger than $F_{1,22,.05} = 4.30$, we may reject H_0 at the .05 level of significance. Apparently, weight should be in the model.
It’s always true that the F-statistic for testing $H_0 : \beta_j = 0$ is such that

$$F = t^2,$$

where t is the t-statistic from the SPSS output. (Check this out for the example on the previous page.)

So, we needn’t use the reduction method to test $H_0 : \beta_j = 0$. We can just use the t-statistic from the standard SPSS output.

Testing a specific subset of variables

In our heart study example, suppose we want to test

$$H_0 : \beta_2 = \beta_3 = 0.$$

We may use the reduction method with B_2 containing β_2 and β_3, and B_1 containing just β_1, in which case $m_1 = 1$ and $m_2 = 2$.
To get $SSR(B_1)$, fit the model with only the age variable in it. This yields

$$SSR(B_1) = 2413.13112,$$

and

$$SSR(B_2|B_1) = 3011.99455 - 2413.13112 = 598.8634.$$

The F-statistic is

$$F = \frac{598.8634/2}{84.08591} = 3.56.$$

At level .05, we reject H_0 if $F \geq F_{2,22,.05} = 3.44$. The F-statistic is just larger than 3.44, so we may conclude that at least one of weight and cholesterol is needed in the model.