Thyroid Cancer Following Scalp Irradiation: A Reanalysis Accounting for Uncertainty in Dosimetry

July 27, 2000

Daniel W. Schafer, Jay H. Lubin, Elaine Ron, Marilyn Stovall and Raymond J. Carroll

Abstract

In the 1940’s and 1950’s, children in Israel were treated for tinea capitis (ringworm) by irradiation. Follow-up studies showed that the radiation was associated with the development of malignant thyroid neoplasms. Despite this clear evidence of an effect, the magnitude of the dose–response is much less clear because of errors in dosimetry. These errors have the potential to bias dose–response estimation, a potential that was not widely appreciated at the time of the original analyses. We revisit this issue, describing in detail how errors in dosimetry might occur, and we develop a new dose–response model that takes the uncertainties of the dosimetry into account. Our model for the uncertainty in dosimetry is a complex and new variant of the classical multiplicative Berkson error model, having components of classical multiplicative measurement error as well as missing data. Analysis of the tinea capitis data suggest that measurement error in the dosimetry has only a negligible effect on dose–response estimation and inference.

KEY WORDS: Berkson measurement error; Dose uncertainty; Likelihood; Measurement error; Missing data; Person–year tables; Poisson regression; Regression calibration; Structural models; Survival analysis.

Short title: Accounting for Uncertainty in Radiation Dosimetry
AUTHOR AFFILIATIONS AND ACKNOWLEDGMENTS

Daniel W. Schafer (schafer@stat.orst.edu) is Professor, Department of Statistics, 44 Kidder Hall, Oregon State University, Corvallis, OR 97331-4606.

Jay H. Lubin (lubinj@exchange.nih.gov) is Mathematical Statistician, Biostatistics Branch, and **Elaine Ron** (rone@exchange.nih.gov) is Chief, Radiation Epidemiology Branch, both with the Division of Cancer Epidemiology and Genetics, National Cancer Institute, Executive Plaza North, EPS/8042, 6120 Executive Boulevard, MSC 7368, Bethesda MD 20892-7244.

Marilyn Stovall (mstovall@notes.mdacc.tmc.edu) is Associate Professor, Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston TX 77030.

Raymond J. Carroll (carroll@stat.tamu.edu) is Distinguished Professor, and Professor in the Department of Statistics, the Department of Epidemiology and Biostatistics, the Faculty of Nutrition and the Faculty of Toxicology, Texas A&M University, TAMU 3143, College Station, TX 77843-3143.

Carroll’s research was supported by a grant from the National Cancer Institute (CA57030), through the Texas A&M Center for Environment and Rural Health via a grant from the National Institute of Environmental Health Sciences (P30-ES09106). Carroll’s research partially occurred during a visit to the Centre for Mathematics and its Applications at the Australian National University, with partial support from ARC Large Research Grant A00000506.
1 INTRODUCTION

In the 1940’s and 1950’s, approximately 11,000 children in Israel received radiation therapy for tinea capitis (ringworm). The purpose of the treatments was to deliver a reasonably uniform dose of approximately 7cGy to the scalp in order to produce epilation (Adamson, 1909; Schulz & Albert, 1968). The radiation therapy consisted of five fields to the scalp (anterior, posterior, right and left laterals, and vertical), with lead shielding over the face and neck. The patients wore a cap that positioned the fields, but they were not immobilized during treatment. The beams were superficial x-rays, 70–100 kVp, half-value layer of approximately 1.0 mm Al.

Several investigators have assessed the late effects of radiation therapy, including the incidence of thyroid tumors (Modan, et al., 1977; Ron, et al., 1989; Ron, et al., 1995). The thyroid gland is highly sensitive to the carcinogenic effects of ionizing radiation. Ron, et al. (1989) note that the Israel study “is one of the few human studies reporting a significant risk of cancers at doses on the order of 10 cGy”.

The study is described more fully in Section 2, but the major issue for this paper involves the dosimetry in converting a recorded course of radiation therapy into a dose to the thyroid. In their analysis of the tinea capitis data, Ron, et al. (1989) used the results of anthropomorphic phantom studies (Modan, et al., 1977; Lee & Youmans, 1970; Schulz & Albert, 1968) to construct a dose to the thyroid from the child’s age at first irradiation, filtration of the x-ray machine, prescribed radiation exposure in Roentgens and number of treatments.

At the time of the analysis reported by Ron, et al. (1989), the potential biases due to dose imprecision in relative risk regression were not as widely appreciated as they are today. More recent articles (Pepe, Self & Prentice, 1989; Pierce, Stram & Vaeth, 1990; Pierce, Stram, Vaeth & Schafer, 1992; Nakamura, 1992; Hughes, 1993; Thomas, Stram & Dwyer, 1993; Lubin, Boice & Samet, 1995; Hu, Tsiatis & Davidian, 1998) have heightened the awareness of the problem and have provided solutions in various situations. The workshop
Uncertainties in Radiation Dosimetry and Their Impact on Dose–Response Analysis (Ron & Hoffman, 1999) was particularly influential in motivating a reexamination of the tinea capitis data.

The purpose of this paper is to reconsider the tinea capitis study to see whether the thyroid radiation dose uncertainties have an effect on the reported dose–response relationship and on the modifying effects of age at exposure. We will also provide a reanalysis that accounts for uncertainties. A major component of this work is the formal incorporation of "external prediction data" into the analysis. By this we mean something like the standard idea of "external validation data" (Carroll, Ruppert & Stefanski, 1995, Chapter 1) in which dose and estimated dose are available on an external data set, the difference in the tinea capitis data being that instead we observe only estimated dose and predictor variables for dose. The use of an externally estimated prediction equation leads to a multiplicative Berkson–type model, but with a classical measurement error component due to the estimation of parameters in the prediction equation. Two additional difficulties complicate the analysis: the dose predictor variables are missing for many patients and the use of the external data set, which is based on phantoms (simulated human bodies with embedded dosimeters exposed in the same way as actual patients), misses some of the sources of dose uncertainty in live humans. Some speculation is necessarily required therefore, although in results not reported here we performed sensitivity analysis to study the ramifications of this speculation.

The outline of the paper is as follows. In Section 2, we describe the data set in some detail. Section 3 provides details of the dosimetry modeling. Section 4 describes likelihood analyses. Section 5 gives our reanalysis of the data. Section 6 gives concluding remarks. Technical details are given in an appendix.
2 DESCRIPTION OF THE DATA SET

The study population consists of 10,834 persons who received x-ray therapy between 1948–1960, 10,834 nonirradiated population matched controls and 5,392 nonirradiated tinea-free siblings. All the irradiated subjects were less than 16 years old at treatment. Study subjects either immigrated to Israel from Africa or Asia or were children of fathers who had immigrated from the same regions. Thyroid cancers occurring between 1960–1986 were ascertained by computer linkage of the study subject roster with the Israel Cancer Registry and were subsequently validated individually. Among the irradiated subjects, 43 developed malignant thyroid tumors and 55 developed benign tumors. Among the nonirradiated subjects, 16 developed malignant thyroid tumors and 41 developed benign tumors.

We decided for simplicity to ignore both kinds of matching and treat subjects as if their responses are independent. We are justified in doing this for the nonexposed matched controls since we include the matching variables (age, sex, country of origin) as explanatory variables in the regression model. We are not justified in treating the siblings as independent, but since there are only 6 of these siblings who developed thyroid cancer, none of whom had a treated sibling who developed thyroid cancer, it is unlikely that correctly accounting for sibling dependence, which would greatly complicate the analysis, will make any difference. It should be noted that there is a potential non-independence from members of the same family being included in the set of exposed patients. The familial connections were not recorded, however, so we must proceed under the assumption that any effect of familial dependence must be small relative to the final resolution of dose-response here. The same assumption was made by Ron, et al. (1989) and Ron, et al. (1995).

Table 1 summarizes the number of thyroid cancers observed by 1986. Some subjects were irradiated for ringworm more than once, as indicated in the column “Number of Courses”.

Of interest in this paper is inference about parameters in a relative risk regression model. Particular attention is given to models of the following form for the age–specific thyroid cancer rate (hazard function) as a function of total radiation dose to the thyroid, D, and
Table 1: Basic statistics for the tinea capitis data base, and the results of the dosimetry. Here “Database average dose” is the average dose (in centi-Grays) as listed in the data base.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|}
\hline
Number of & Number of & Number of cancers & Database average dose \\
courses & subjects & per 1000 & \\
\hline
0 & 16226 & 1.0 & 0.0 \\
1 & 9814 & 4.0 & 8.4 \\
2 & 904 & 5.5 & 17.5 \\
3 & 110 & 0.0 & 25.7 \\
4 & 6 & 0.0 & 27.0 \\
\hline
\end{tabular}
\end{table}

additional covariates X:

\[h(t|X, D, B) = \exp\{X_{br}^T(t)\beta_{br}\} \left[1 + D \exp\{\beta_{dr} + X_{em}^T(t)\beta_{em}\} \right]. \] (1)

In (1), $X = X(t) = (X_{br}, X_{em})$, where X_{br} is a vector of those covariates associated with background rate (hence “br”), such as time since first exposure, while X_{em} is a vector of those covariates that modify the radiation dose-response, i.e., effect modifiers (hence “em”). In what follows, we will suppress the dependence of X on t. The parameters $B = (\beta_{br}, \beta_{em}, \beta_{dr})$ are associated with (X_{br}, X_{em}, D), and hence control background rate, effect modifiers and dose response (hence “dr”), respectively.

Standard techniques (Breslow, Lubin, Marek, & Langholz, 1983) could be used to make inferences about B, except for the fact that D is unavailable and must be predicted for each patient from auxiliary information. As detailed later in the paper, we have partial information from phantom studies to estimate an equation for predicting D from this auxiliary information. The gist of our approach is likelihood analysis for the induced hazard function given the auxiliary information, using both the combined primary data set and the secondary phantom studies. Sensitivity analyses were used to explore those parts of the model that necessarily require some speculation, although in the interest of space these results are not reported here.

The estimated dose depends on three pieces of information: what we know from phantom studies about how to estimate dose from x-ray machine settings and child age, what we know
about the machine settings for the particular machines used on the tinea capitis patients, and what we know from the database about the children’s age at times of exposure and the particular machine they were exposed with. As we shall see, all three of these types of information are imperfect or incomplete. It is convenient therefore, to let \(\mathcal{W} \) represent those types of information that are actually available in the existing database for predicting dose for each child: age at first exposure, number of exposures, code for place of irradiation (Table 2). It is also convenient to let \(\mathcal{V} \) be the set of variables that are used to estimate dose in the phantom studies, although with machine settings limited to those that are available for the machines used in Israel: number of exposures, ages at all exposures, prescribed beam
exposures in Roentgens at all exposures, added filtration in mm of aluminum at all exposures. Our task then is to estimate the parameters in the radiation dose–response model from the induced hazard function given the observable variables \((X, W)\). This will require us to (a) devise and estimate models for dose as a function of \((X, V)\); (b) devise and estimate a model for the distribution of \(V\) given \((X, W)\); and (c) put these together to obtain a model for dose given \((X, W)\). Sections 3.2, 3.3 and 3.4 detail our approach for handling (a), (b) and (c), respectively.

3 MODELING TRUE DOSE

3.1 Introduction

In this section, we show that our problem is oriented around a Berkson–type error model but with nonstandard features in the error model and important sources of missing data. We will first describe the basic model (Section 3.2), describe our model for the missing data (Section 3.3), and contrast our estimated doses to those in the original data base (Section 3.4).

The principal sources of uncertainties in the dosimetry are related to patient treatment. These include patient movement during treatment, errors in calibration of machine output, patient set-up including target to skin distance, machine–on time, constancy of machine output during treatment, and documentation of treatment parameters. Of presumably lesser magnitude are the uncertainties inherent in the methods of estimating dose to the thyroid, such as phantom measurements and associated calculations.

3.2 Dosimetry from Experiments on Phantoms

Several studies experimentally estimated radiation thyroid doses associated with tinea capitis radiotherapy by exposing phantoms to similar x–ray conditions (Werner, Modan and Davidoff, 1968; Schulz & Albert, 1968; Lee & Youmans, 1970; Modan, Ron and Werner,
1977). From the early dosimetry studies it was believed that conditions like those in Israel would produce thyroid doses of about 6 cGy (centi-Grays) on a 6-year old child treated a single time. Modan, et al. (1977) believed that doses would tend to be higher for live children, who might have been positioned imperfectly and who would have moved during the course of treatment. They investigated the effect of slight repositioning of the phantoms prior to exposure and found a 6-year old dose to be closer to 9 cGy.

There are further effects due to different machines used. The amount of radiation to the thyroid depends on the beam quantity, as measured by half-value thickness (HVT, in mm of beam penetration into aluminum) and beam quality, as measured by beam exposure to the skin (in Roentgens). The recommended values for tinea treatment were 1.0 mm Al HVT and skin exposure of 300 to 500 Roentgens (Lee & Youmans, 1970). The actual values used in Israel were between 0.0 and 1.0 mm Al HVT and 350 to 425 Roentgens. Some information about the specific values at the treatment centers listed in Table 2 is also available.

The remainder of this section pertains to the use of the Modan, et al. (1977) data to derive a model for thyroid dose as a function of skin exposure and machine filtration. The latter is the only variable associated with HVT that is available on the machines used in Israel. The following assumptions will be used: (a) all else being equal, thyroid dose is directly proportional to skin exposure; and (b) physical models developed by dosimetrist adequately reflect the effects of age. The results on the phantom data are consistent with the first assumption being true. The second concerns the fact that the thyroid doses will tend to be larger for younger children since their thyroid glands will tend to be closer to the source of radiation. Table 3 shows the presumed dose adjustment factor relating dose at a given age to the dose of a 6-year old exposed under the same condition. These adjustment factors are based on known physical sizes of children in the various age groups and models of radiation transmission through the head to the thyroid. Although some phantom data based on skulls from children of different ages are available (Lee & Youmans, 1977 report results for phantoms representing ages 3, 6 and 12), they are insufficient for checking adequately
the presumed relationship between age and thyroid dose given in Table 3, so assumption (b) will be used without direct empirical verification.

<table>
<thead>
<tr>
<th>Age, A</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA</td>
<td>1.70</td>
<td>1.50</td>
<td>1.39</td>
<td>1.25</td>
<td>1.10</td>
<td>1.00</td>
<td>0.90</td>
<td>0.82</td>
</tr>
</tbody>
</table>

Table 3: Dose adjustment factors C_A, giving dose relative to the dose for a six year old.

After considering sources of uncertainty, using the assumptions discussed above, and analyzing the phantom data of Modan, et al. (1977) and Lee & Youmans (1970), we developed the following model for the distribution of dose on a single course of treatment from rounded (to the nearest integer) age of exposure A, added filtration in mm of aluminum F and prescribed beam exposure in Roentgens R:

$$\log(D) = \log(C_A R) + \theta_0 + \theta_1 F^2 + \epsilon_w + \epsilon_b + \epsilon_r,$$

where $\Theta = (\theta_0, \theta_1)$ are unknown parameters and the ϵ's are random error terms representing within-individual effects, between-individual effects and random errors due to differences between prescribed and actual skin exposure. The error terms are taken to have mean zero and standard deviations σ_w, σ_b and σ_r, respectively.

The dose to the thyroid on the jth course of treatment for the ith individual is D_{ij}, and the total dose to the thyroid for this individual is $D_i = \sum_j D_{ij}$.

The random error ϵ_w represents a within-individual effect, reflecting the different thyroid doses that would occur if a child were hypothetically irradiated twice under ideal conditions. The sources of this terms are primarily movement during treatment and peculiarities in positioning the body for treatment. An estimate of the standard deviation σ_w of these effects can be obtained from the Modan, et al. (1977) phantom study. In this study, a “seven year old” phantom was repositioned between repeated irradiations. We find that an estimate is $\hat{\sigma}_w = 0.17$ based on 13 degrees of freedom. However, this estimate involves
speculation that the researchers accurately simulated the movement and positioning of a live child with their manipulations of the phantom. The Modan, et al. study supports assuming that the within-individual errors are normally distributed.

The random error term ϵ_b represents a between-individual effect, reflecting the different thyroid doses that would occur for different children of identical rounded ages under ideal machine conditions, due to differences in head size and shape. An estimate of σ_b from the three distinct phantoms investigated by Lee & Youmans (1970) is $\hat{\sigma}_b = 0.49$, on two degrees of freedom. We will assume normality for the between-individual errors, but this assumption is purely speculative. To the level of roughness of the entire analysis though, this assumption seems innocuous.

We have no data for estimating the standard deviation of ϵ_r. A study of a single machine by Schulz & Albert (1968) found that the actual skin exposure might differ from the prescribed amount R by 15% or more. The dosimetrist among us (Stovall) believes that around 25% is a better estimate. We will explore a range of values σ_r that includes these possibilities.

If normality is assumed for the three random errors, and if the estimate of Θ is used in place of the unknown values, the median dose from a single exposure as a function of age, skin exposure and filtration can be written as

$$\text{median}(\text{Dose}|A, R, F) = 8.6C_A(R/375) \exp \left\{ 0.5(F - 0.5)^2 \right\},$$

where 8.6 is the estimated median dose for a 6-year old exposed at 375 Roentgens and 0.5 Filtration. The mean dose is then given by

$$\text{mean}(\text{Dose}|A, R, F) = \text{median}(\text{Dose}|A, R, F) \exp \left\{ (\sigma_w^2 + \sigma_b^2 + \sigma_r^2) / 2 \right\}.$$

The mean is of course larger than the median since the distribution of dose is assumed to be skewed. There is no need to think about which of these two is more appropriate for individual dose estimation since the statistical theory is explicit in what is called for, see Section 4.
3.3 Models for Missing Data

Assuming total thyroid dose for a tinea capitis–treated child to be the sum of doses at all of his or her exposures, we could use the model of the previous section to estimate the total dose given \((X, Y)\) (defined in Section 2). Of course, we do not have this information for all individuals. All that is available is \((X, W)\) (also defined in Section 2). As an intermediate step for deriving a model for total dose given \((X, W)\), we detail in this section an assumed model for \(Y\) given \((X, W)\).

![Histogram of age at first treatment for irradiated subjects](image)

Figure 1: Histogram of the age at first treatment for irradiated subjects.

The age at first exposure \(A_{11}\) is known for all individuals in the study. However, approximately 9% of the children had at least two irradiations (Table 1), and for those individuals who were irradiated more than once, the age at which subsequent irradiation took place is unknown, although it necessarily took place before the age of 16. Given the lack of information, we are forced to rely on a derived distribution for the ages of second and later irradiations, as follows. In Figure 1 we give the age at first irradiation histogram for irradiated subjects. Based on anecdotal evidence, we assumed that the age at second irradiation was at least a year older than the age at first irradiation. Using this, we set the age at second,
and if necessary subsequent irradiations as if they were a random sample from the histogram in Figure 1 conditional on being at least a year older than the age at first irradiation.

The filtration and nominal exposures depend on the machine and on the location. Table 2 shows what is known about where the irradiation took place. For example, a subject whose irradiation code is "03" is known to have had one course of treatment at Haifa and one course of treatment at Tel Hashomer, but it is not known which came first. Table 4 shows the information known about prescribed skin exposure and filtration for the machines used.

<table>
<thead>
<tr>
<th>Place</th>
<th>Percentage of all treatments</th>
<th>Machine</th>
<th>Filtration</th>
<th>Prescribed Exposure (R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haifa</td>
<td>72%</td>
<td>1</td>
<td>0.5</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>0.5</td>
<td>384</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0.5</td>
<td>383</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>0.6</td>
<td>NA</td>
</tr>
<tr>
<td>Jerusalem</td>
<td>13%</td>
<td>1</td>
<td>0.5</td>
<td>425</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>0.5</td>
<td>425</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0.5</td>
<td>425</td>
</tr>
<tr>
<td>Tel Hashomer</td>
<td>11%</td>
<td>1</td>
<td>0.0</td>
<td>350</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>0.0</td>
<td>350</td>
</tr>
<tr>
<td>"N"</td>
<td>1.6%</td>
<td>1</td>
<td>1.0</td>
<td>350–400</td>
</tr>
<tr>
<td>"Abroad"</td>
<td>1.9%</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>"Other"</td>
<td>0.8%</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

Table 4: Available information about machines used at the various treatment locations: "NA" means not available. Notice that most treatments were performed in Haifa, and only about 3% were performed in "N", "Abroad" or "Other".

In Jerusalem the machines had a common filtration 0.5 and nominal exposure 425. The same occurs in Tel Hashomer, although the values of the filtration (0.0) and nominal exposure (350) differed from that in Jerusalem. In Haifa, there were four machines, with filtrations (0.5, 0.5, 0.5, 0.6) and nominal exposures (400, 384, 383, NA), where NA means unknown, but the machine used on each child was not recorded. Thus, for Haifa we assumed that the actual filtration was 0.5 with probability 0.75 and 0.6 with probability 0.25. For the nominal exposure, we assumed that the distribution was 400, 384 and 383, each with probability 0.25, while with probability 0.25 the nominal exposure was taken to be uniformly

<table>
<thead>
<tr>
<th>Condition Label</th>
<th>Nominal Exposure \bar{R}</th>
<th>Filtration F</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1</td>
<td>400</td>
<td>0.5</td>
</tr>
<tr>
<td>C_2</td>
<td>384</td>
<td>0.5</td>
</tr>
<tr>
<td>C_3</td>
<td>383</td>
<td>0.5</td>
</tr>
<tr>
<td>C_4</td>
<td>Uniform $[350,425]$</td>
<td>0.6</td>
</tr>
<tr>
<td>C_5</td>
<td>425</td>
<td>0.5</td>
</tr>
<tr>
<td>C_6</td>
<td>350</td>
<td>0.0</td>
</tr>
<tr>
<td>C_7</td>
<td>Uniform $[350,425]$</td>
<td>1.0</td>
</tr>
<tr>
<td>C_8</td>
<td>Uniform $[350,425]$</td>
<td>0.0 with probability 0.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5 with probability 0.85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.0 with probability 0.05</td>
</tr>
</tbody>
</table>

Table 5: The distribution of filtration F_{ij} and exposure R_{ij}. The logarithm of the exposure is assumed to be normally distributed with mean $\log(\bar{R}_{ij})$ and standard deviation $\sigma_r = 0.25$. Children exposed in Haifa are assumed to be in one of conditions C_1–C_4 at random, each with probability 0.25. For Jerusalem, the condition is C_5. For Tel Hashomer, the condition is C_6. For location “N”, the condition is C_7. For “other” and “abroad”, the condition is C_8. The nominal exposure was unknown and again taken to be uniformly distributed between 350 and 425. Finally, for those who were irradiated abroad, neither filtration nor nominal exposure were available. The nominal exposure was taken to be uniformly distributed between 350 and 425, while the filtration is assumed to take on the values (0.0, 0.5, 1.0) with probabilities (0.10, 0.85, 0.05), a distribution somewhat in keeping with the observed filtrations. We describe the distributions of filtration and exposure in Table 5.

3.4 Expected Dose Given Available Information

The model developed above, and especially in Section 3.3 can be applied to compute expected doses for individuals given available information. Let L_i be the number of irradiations for person i. We need to compute $E(D_i|X_i, W_i)$. The relevance of this quantity in the induced hazard function given (X_i, W_i) is described in Section 4. Let D_{ij} be the thyroid dose on
treatment \(j\). It follows of course that

\[
E(D_i|X_i, \mathcal{W}_i) = \sum_{i=1}^{L_i} E(D_{i\ell}|X_i, \mathcal{W}_i) = \sum_{i=1}^{L_i} \int E(D_{i\ell}|X_i, \mathcal{V}_i) f(\mathcal{V}_i|X_i, \mathcal{W}_i) d\mathcal{V}_i.
\]

This quantity can be computed for each subject using the model for expected dose given \((X, \mathcal{V})\) from Section 3.2, and the model for \(\mathcal{V}\) given \((X, \mathcal{W})\) from Section 3.3. The integration can be accomplished with Monte-Carlo methods, because in Section 3.3 we specified the requisite distribution.

![Figure 2: Plots of expected and mean doses given the observed data against the original dose in the data base.](image)

Values of \(E(D|X, \mathcal{W})\) using the estimates of \(\Theta\) from the Modan, et al. data are plotted versus the database estimates of dose in Figure 2. For the lower doses the mean is higher than the database dose, primarily for the reasons discussed at the end of Section 3.2, i.e., the mean of a skewed distribution is higher than the median. Another key feature of the plot
though is the curvature on the high end. This is due to our use of more realistic assumptions about ages at second and subsequent exposures. The database dose used calculations that assumed age at first exposure for all courses of treatment, and therefore tended to be too large because the calculations assumed that the subjects did not grow over time.

Table 6 compares the data base mean dose with the estimated doses from our dosimetry model, on the basis of the number of treatments received.

<table>
<thead>
<tr>
<th>Number of courses</th>
<th>Number of subjects</th>
<th>Database average dose</th>
<th>Model Average mean dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>16226</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1</td>
<td>9814</td>
<td>8.4</td>
<td>9.8</td>
</tr>
<tr>
<td>2</td>
<td>904</td>
<td>17.5</td>
<td>18.6</td>
</tr>
<tr>
<td>3</td>
<td>110</td>
<td>25.7</td>
<td>26.4</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>27.0</td>
<td>28.1</td>
</tr>
</tbody>
</table>

Table 6: Basic statistics for the tinea capitis data base, and the results of the dosimetry. Here “Database average dose” is the average dose as listed in the data base. “Model average mean dose” is the average of the dose from the model, where the model dose is the mean dose from the simulation.

4 LIKELIHOOD FORMULATION

4.1 Background and Introduction

The purpose of this section is to describe in detail the likelihood formulation we used to estimate the parameters in the model. Let D be true dose, V be a vector of variables available for predicting dose from phantom studies (number of exposures, ages at all exposures, prescribed beam exposures in Roentgens at all exposures, added filtration in mm of aluminum at all exposures), let W be a vector of variables available for predicting dose in the tinea subjects (age at first exposure, number of exposures, irradiation place code) and let X be a vector of additional, observable covariables that may be present in the dose–response model (sex, country of origin, age at first exposure, number of exposures). Let T be the random variable representing the elapsed time after entry into the study until onset of thyroid cancer.
The goal is to use the censored observations on T from the tinea capitis study group to estimate the induced hazard function associated with the distribution of T given the observables X and \mathcal{W}, which will reveal the important features about the hazard function of interest, namely the one associated with the distribution of T given D and X. The vector \mathcal{V} plays an intermediate role in this.

Let $h(t|D, X, \mathcal{B})$ be the hazard function corresponding to the distribution of T conditional on true dose and additional covariates X. We use (1) for the hazard function, which is a commonly used model for dose-response at low doses of radiation.

4.2 Induced Hazard Function

Assume conditional independence of time to cancer and \mathcal{W}, i.e.,

$$h(t|D, X, \mathcal{W}, \mathcal{B}) = h(t|D, X, \mathcal{B}).$$

(3)

It then follows from arguments analogous to those of Prentice (1982) that the induced hazard, given X and \mathcal{W}, has the form

$$h(t|X, \mathcal{W}, \mathcal{B}, \Theta) = E \{h(t|D, X, \mathcal{B})|T \geq t, X, \mathcal{W}, \Theta\},$$

(4)

where Θ represents the unknown parameters in the distribution of D given X and \mathcal{W}. It is important to note that Prentice showed this to be true for the special case that \mathcal{W} is a measurement of D. In our case \mathcal{W} is, instead, a vector of predictor variables. The derivation, as shown in Section A.1 below, is identical to Prentice’s, but the conditional independence assumption (3) requires some different considerations.

In particular, the variable *age at first exposure* is one component of \mathcal{W}. On the surface, therefore, it appears that we must assume that time to cancer is independent of age at first exposure when true dose is available; that is, we must assume there is no modifying effect of exposure age in order to proceed. The situation is not so bad, though, since age at first exposure is also present in X. Apparently, the conditional independence assumption is only that T is conditionally independent of those components of \mathcal{W} that are not also present in
X. Nevertheless, there must be some recognition that simultaneously accounting for dose uncertainties and the modifying effect of exposure age may pose difficulties, since exposure age is one of the main variables that provides information about dose. The variable number of exposures has similar problems. Since the risk of disease is small, the approximation to (4) obtained by dropping the condition $T \geq t$ should be adequate (as discussed in Pepe et al., 1989); in which case the hazard based on the observable covariates X and \mathcal{W} is

$$h(t|X, \mathcal{W}, B, \Theta) = E \{h(t|D, X, B)|X, \mathcal{W}, \Theta\} = h \{t|E(D|X, \mathcal{W}, \Theta), X, B\},$$

where the last equality holds because the assumed hazard function of interest is linear in dose.

Thus, the parameters of interest are present in the hazard function given the observable variables:

$$h(t|X, \mathcal{W}, B, \Theta) = \exp(X_{br}^T(t)\beta_{br}) \left[1 + E(D|X, \mathcal{W}, \Theta) \exp\{\beta_{dr} + X_{em}^T(t)\beta_{em}\}\right]. \quad (5)$$

If, for example, Θ is known and $E(D|X, \mathcal{W}, \Theta)$ can be calculated for each subject in the tinea study group, then parameters may be estimated with standard methods but with unknown doses replaced by their expectations given X and \mathcal{W}. In general, the technique of using usual methods but with the unknown doses replaced by their expectations given available variables is known as regression calibration (Carroll, et al., 1995). There is additional justification here, though, since (5) is essentially the exact hazard function given the available variables and not the result of a first-order Taylor approximation for small dose uncertainties.

If Θ were known, then the parameters in the relative risk portion of (5), i.e., the part in brackets, could be estimated either by the partial likelihood analysis of the Cox regression model or by the subject-years method, which is based on Poisson likelihood calculations of cancer occurrences tabulated over intervals of time after entry into the study. We shall focus on the latter because we wish to use an exact likelihood function. In that way we can
combine the likelihood associated with the tinea subjects with the likelihood associated with the phantom studies, in order to simultaneously estimate \mathcal{B} and Θ.

4.3 Likelihood function

The density function for T_i for the ith member of the tinea study group is

$$
f(t|D_i^\Theta, X_i, \mathcal{B}, \Theta) = h(t|D_i^\Theta, X_i, \mathcal{B}) \exp \left\{- \int_0^t h(u|D_i^\Theta, X_i, \mathcal{B}) du \right\},$$

where D_i^Θ is an abbreviation for $E(D_i|X_i, W_i, \Theta)$ and $h(t|D_i^\Theta, X_i, \mathcal{B})$ is the hazard function in (5) above, see, for example, Cox and Oakes (1984, Section 2.2). Assuming independence, i.e., that the joint density of the T_i's given expected doses and additional covariates is the product of the individual densities, the log likelihood function from the tinea subjects is given by

$$
\ell_{\text{tinea}}(\mathcal{B}, \Theta) = \sum_i \left\{ \nu_i \log \left\{ h(T_i|D_i^\Theta, X_i, \mathcal{B}) \right\} - \int_0^{S_i} h(u|D_i^\Theta, X_i, \mathcal{B}) du \right\},
$$

where ν_i is an indicator variable for uncensored observations, and S_i is the minimum of T_i and the censoring time (Cox and Oakes, 1984, Section 3.2).

The subject-years or Poisson approach offers relatively simple calculations by tabulation according to various states that the subjects pass through during the course of observation. For a given fixed value of Θ, the tinea data may be cross-classified according to J states formed by all combinations of various categories of time since exposure and explanatory variables such as sex, country of origin, expected dose and age at first exposure. With the inconsequential assumption that the covariates (X, D^Θ) take on constant values within states, the loglikelihood reduces to

$$
\ell_{\text{tinea}}(\mathcal{B}, \Theta) = \sum_{j=1}^J \left[O_j \log \left\{ h(t|D_j^\Theta, X_j, \mathcal{B}) \right\} - h(t|D_j^\Theta, X_j, \mathcal{B}) E_j \right],
$$

where O_j is the observed number of cancers and E_j is the person-years of observation in state j, see for example Breslow, et al. (1983). The actual value used for D_j^Θ, for a given Θ, is the person-years weighted average of expected dose for all individuals i that observed in state j.

17
One approach is to estimate Θ from the phantom data, then treat it as known for maximum likelihood estimation of B from (6): we call this regression calibration. In this, however, the covariate D_j^Θ is an imprecise estimate of the explanatory variable of interest, D_j^Θ. Writing $D_j^\Theta = D_j^\Theta + \epsilon_j$, where ϵ_j represents the imprecision due to sampling variability in estimating Θ, it is evident that classical measurement error is present. Note, however, that $\text{cov}(\epsilon_j, \epsilon_j) \neq 0$ because the error component $\hat{\Theta} - \Theta$ is common to all values.

Alternatively, we may combine the tinea likelihood with the likelihood from the phantom studies and maximize them, with respect to (B, Θ) jointly: we call this calibrated likelihood. Let $\ell_{\text{phantom}}(\Theta)$ represent the log likelihood function from the phantom study. The combined log likelihood is therefore

$$
\ell_{\text{combined}}(B, \Theta) = \ell_{\text{phantom}}(\Theta) + \sum_{j=1}^J \left[O_j \log \left\{ h(t|D_j^\Theta, X_j, B) \right\} - h(t|D_j^\Theta, X_j, B) E_j \right].
$$

(7)

This seems awkward in that the states j are defined for an unknown value of Θ. Using a Newton-Raphson or Fisher scoring algorithm for maximization, however, it is apparent that the tabulations only need to be formed for current estimates of Θ at each iteration.

4.4 Model for Expected Dose Given Proxy Variables

Recall that V represents the variables that are available for predicting dose from the phantom studies but what we need is the expected value of dose given (X, W), the variables available on the tinea subjects. The connection between V and W is used in the following way:

$$
E(D|X, W, \Theta) = \int E(D|X, V, \Theta) f(V|X, W) dW.
$$

(8)

The phantom data and dosimetric considerations lead to a model for $E(D|X, V, \Theta)$. Details of this are laid out in Section 3.

The distribution of V given (X, W) depends on: (i) the distribution of ages at 2nd and subsequent treatments given age at first treatment (if applicable) and (ii) the distribution of machine exposure (in Roentgens) and filtration given the subject’s irradiation place code.
Details of the assumptions involved in this are laid out in Section 3. It is straightforward to use Monte Carlo integration for (7).

It is now useful to insert the particular model derived from the phantom studies:

\[E(D|X, \mathcal{W}, \Theta) = \exp\{\langle \sigma_w^2 + \sigma_0^2 + \sigma_1^2 \rangle/2 \} \sum_{\ell=1}^L g(A_\ell, R_\ell) \exp(\theta_0 + \theta_1 F_{\ell}^2) , \]

where \(L \) is the number of courses of treatment, \(A_\ell \) is the age at the time of the \(\ell \)th treatment, \(R_\ell \) is the nominal skin exposure of the machine used in the \(\ell \)th treatment, \(F_\ell \) is the machine filtration used in the \(\ell \)th treatment, and \(g(\cdot) \) is a known function, see (2). So, using Monte Carlo integration, take \(M \) samples from the distribution of \(\mathcal{U} \) given \((X, \mathcal{W}) \) and call these \(\mathcal{U}_m \) for \(m = 1, ..., M \). Then we have as an approximation

\[E(D|X, \mathcal{W}, \Theta) \approx M^{-1} \sum_{m=1}^M \sum_{\ell=1}^L \exp\{\langle \sigma_w^2 + \sigma_0^2 + \sigma_1^2 \rangle/2 \} g(A_{m,\ell}, R_{m,\ell}) \exp(\theta_0 + \theta_1 F_{m,\ell}^2) . \]

In the log likelihood function (6), \(D_j^\Theta \) is the person-years weighted average of the doses for all individuals represented in state \(j \). Thus, for fixed \(\Theta \),

\[D_j^\Theta = M^{-1} \sum_{i \in \mathcal{S}_j} \sum_{m=1}^M \sum_{\ell=1}^L w_i \exp\{\langle \sigma_w^2 + \sigma_0^2 + \sigma_1^2 \rangle/2 \} g(A_{i,m,\ell}, R_{i,m,\ell}) \exp(\theta_0 + \theta_1 F_{i,m,\ell}^2) , \]

where \(\mathcal{S}_j \) is the set of indices \(i \) corresponding to individuals whose exposure history includes state \(j \), \(w_i \) is the person-years of observation of individual \(i \) in state \(j \) as a proportion of the total person-years of observation in state \(j \).

The Fisher Scoring Algorithm may be used to find the values of \(\mathcal{B} \) and \(\Theta \) that maximize (7).

5 THE REANALYSIS

In Section 4 we detailed two approaches for the analysis. In the regression calibration approach the "subject-years" or "Poisson" method is used to estimate the hazard function, but with doses replaced by their expectations given available patient information; and with the unknown parameter associated with the expectations, \(\Theta \), replaced by its estimate from the
phantom study. The cross-classification, in this case, was based on sex (2 levels); origin (3 levels: Africa, Asia, Israel); age at first exposure (8 levels: [0,2],[2,4],[4,6],[6,8],[8,10],[10,12], [12,14],[14,16]), attained age (8 levels: [0,15], [15,20], [20,25], [25,30], [30,35], [35,40], [40,45], [45]), and expected dose (6 levels: 0, (0,7.5], [7.5,15], [15,22.5], [22.5,30], [30,100]).

Attained age at time of thyroid cancer is the response here. Since the patients were all exposed as children there is little difference between using this response and time since exposure. In the calibrated likelihood approach the cross-classification is performed at each iteration after an updating of the estimates of Θ based on the combined data sets.

As seen in Table 7 the difference in the estimates from these two approaches is very small relative to the standard errors. Notice, though, that the standard error for the coefficient of dose is larger in the calibrated likelihood estimate, as would be expected since this estimate correctly incorporates the uncertainty in the estimate of Θ. Neither approach, however, incorporates the uncertainty in the estimates of the variances of the random effects.

The results in Tables 7 and 8, which are more suited for interpretation, are based on the regression calibration approach. The results from Tables 7, 8 and 9 may be summarized as follows:

1. There is a statistically significant dose-response (1-sided p-value = .009). Although the estimated modifying effect of age on the dose-response is pronounced, it is not statistically significant (2-sided p-value = .37).

2. Accounting for error in dosimetry changes hardly any of the parameter estimates, or the relative risk for different ages at first exposure.

3. There are a few technical points worth noting.

 (a) We did not include sex as a modifying effect since, in all cases, its p-value is about .4 (likelihood ratio test).

 (b) The coefficients for background terms are not very interesting to us. Since these
do not depend on dose, we should expect to see what we did observe, namely essentially no differences in these for the various methods.

(c) These results are for \((\sigma_w, \sigma_b, \sigma_r) = (0.17, 0.49, 0.15) \). We have redone the analysis with \((\sigma_w, \sigma_b, \sigma_r) = (0.17, 0.25, 0.25) \), and there is little change in the analysis.

(d) The value of the log likelihood from the phantom data alone is about -0.6. This is essentially the amount by which the log likelihoods in the last two columns of Table 7 differ.

6 DISCUSSION AND CONCLUSIONS

The uncertainties in thyroid radiation dose in the tinea capitis study are due to a variety of factors, particularly the following.

1. Radiation dose to the thyroid is unknown for all patients. In addition, there are substantial amounts of missing data.

 (a) Age at second+ exposure is missing for the 9% of the subject with more than one exposure.

 (b) The machines used, their filtration and the prescribed beam exposures to the scalp are not known for many patients.

2. There are a variety of sources of Berkson-type errors.

 (a) Within-individual effects, reflecting the different thyroid doses that would occur if a child were hypothetically irradiated twice under ideal conditions.

 (b) Between-individual effects, reflecting the different thyroid doses that would occur for different children of identical rounded ages under ideal machine conditions, due to differences in head size and shape.

 (c) Random errors due to differences between prescribed and actual skin exposure.
3. There are some sources of classical measurement errors.

(a) The error model (2) includes two parameters, \((\theta_0, \theta_1)\), that control the relationship between added filtration and dose, and these parameters are unknown and must be estimated. When they are estimated from phantom studies, that act as a type of classical measurement error, although shared among all individuals.

(b) The variances of the Berkson–type errors are unknown and must be estimated. In principle, the error in this estimation is of the same classical–type as the error in estimating \((\theta_0, \theta_1)\). Because these error variances are estimated with little precision, in results not reported here we chose to perform a sensitivity analysis for them, finding little sensitivity.

We have developed models that account for these uncertainties, and methods of estimation and inference for them. In particular, we developed the idea of a calibrated likelihood, which is similar to the standard regression calibration or substitution algorithm, but which uses the likelihood contribution about uncertainty parameters from external sources.

Our results were striking in finding little effect due to accounting for uncertainty. Parameter estimates, standard errors and inferences were all little affected by accounting for the uncertainty. We believe this is due to the fact that the relative risk model (1) is linear in dose, and because much of the uncertainty is of Berkson–type.

REFERENCES

Appendix A TECHNICAL DETAILS

A.1 Justification of (3)

As in Prentice (1982) and Pepe, et al. (1989), the hazard function induced by the observed data is

\[
h(t|X, W, B) = \lim_{\Delta \to 0} \frac{\Pr(t \leq T \leq T + \Delta|X, W, B)}{\Delta}
\]

\[
= \lim_{\Delta \to 0} \int \frac{\Pr(t \leq T \leq T + \Delta|D, X, W, B, T \geq t)f(D|X, W, T \geq t, \Theta)}{\Delta} dD
\]

\[
= \int \lim_{\Delta \to 0} \frac{\Pr(t \leq T \leq T + \Delta|D, X, B, T \geq t)}{\Delta} f(D|X, W, T \geq t, \Theta) dD,
\]

this last step following from the conditional independence assumption (3). We have thus shown that

\[
h(t|X, W, B) = E \{h(t|D, X, B)|X, W, T \geq T, \Theta}\),
\]

as claimed.
Table 7: Results for the dose–response model \(\exp(X_{br}^T \beta_{br}) \{1 + D \exp(\beta_{dr} + X_{em}^T \beta_{em})\} \). Parameter estimates are given, along with standard errors (in parentheses). There is obviously little difference between regression calibration and calibrated likelihood. The results are for within–person standard deviation \(\sigma_w = 0.17 \), between–person standard deviation \(\sigma_b = 0.49 \), and the standard deviation of random errors due to differences between prescribed and actual skin exposure \(\sigma_r = 0.15 \).

<table>
<thead>
<tr>
<th>Terms in Background Rate</th>
<th>Model With Age at Exposure as Modifying Effect of Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Regression</td>
</tr>
<tr>
<td></td>
<td>Naive</td>
</tr>
<tr>
<td>constant</td>
<td></td>
</tr>
<tr>
<td>female indicator</td>
<td>-11.94 (.65)</td>
</tr>
<tr>
<td>Africa indicator</td>
<td>1.37 (.33)</td>
</tr>
<tr>
<td>Israel indicator</td>
<td>-0.29 (.33)</td>
</tr>
<tr>
<td>attained age in [15,20]</td>
<td>1.05 (.56)</td>
</tr>
<tr>
<td>attained age in [20,25]</td>
<td>1.23 (.52)</td>
</tr>
<tr>
<td>attained age in [25,30]</td>
<td>1.32 (.51)</td>
</tr>
<tr>
<td>attained age in [30,35]</td>
<td>1.30 (.51)</td>
</tr>
<tr>
<td>attained age [35,inf)</td>
<td>1.34 (.58)</td>
</tr>
<tr>
<td>Dose</td>
<td>-0.38 (.57)</td>
</tr>
<tr>
<td>Effect modifier</td>
<td></td>
</tr>
<tr>
<td>age at exposure</td>
<td>-0.12 (.09)</td>
</tr>
<tr>
<td>Maximized log likelihood</td>
<td>-598.0</td>
</tr>
<tr>
<td>Maximized log likelihood without modifying effects</td>
<td>-598.9</td>
</tr>
<tr>
<td>Dose without modifying effects</td>
<td>-1.05 (0.41)</td>
</tr>
<tr>
<td>Maximized log likelihood without dose effects</td>
<td>-614.3</td>
</tr>
</tbody>
</table>

Table 8: The relative risk depends on dose in the form \(1 + \alpha Dose \). This table gives the estimates of \(\alpha \) for children with different ages at first exposure.

<table>
<thead>
<tr>
<th>Model</th>
<th>Age = 1</th>
<th>Age = 6</th>
<th>Age = 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naive</td>
<td>0.61</td>
<td>0.34</td>
<td>0.12</td>
</tr>
<tr>
<td>Corrected</td>
<td>0.53</td>
<td>0.30</td>
<td>0.11</td>
</tr>
<tr>
<td>Model</td>
<td>Age = 1</td>
<td>Age = 6</td>
<td>Age = 15</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>Naive</td>
<td>7.1</td>
<td>4.4</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>(3.2,17.6)</td>
<td>(2.4,8.8)</td>
<td>(1.2,9.7)</td>
</tr>
<tr>
<td>Corrected</td>
<td>6.3</td>
<td>4.0</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>(2.9,15.3)</td>
<td>(2.2,8.2)</td>
<td>(1.1,9.6)</td>
</tr>
</tbody>
</table>

Table 9: The estimated relative risk when children are exposed at a dose of 10cGy; 95% confidence intervals are given in parentheses.