NONPARAMETRICS, SEMIPARAMETRICS AND MEASUREMENT ERROR FOR SOME MARGINAL MODELS IN LONGITUDINAL DATA

Raymond J. Carroll
Texas A&M University
http://stat.tamu.edu/~carroll (most papers available)
http://stat.tamu.edu/B3NC (Training program in biology & bioinformatics)

Xihong Lin
University of Michigan
http://www.sph.umich.edu/~xlin
Basic Conclusions

- We study a particular class of marginal nonparametric and semiparametric models for correlated data.
- The central theme is that intuition from the iid case often fails, and in subtle ways.
- Each problem has to be thought through carefully, even if you assume working independence. Here are a few results:
 - Semiparametric profile methods need not be semiparametric efficient.
 - Blind application of error–correction methods is inefficient.
 - Classic kernel methods do not have the behavior one would expect.
 - Splines seem to be better than kernel methods.
FRAMEWORK: PANEL DATA

- For cluster i, wave j, we have studied models of the general form

$$E(Y_{ij} | X_{ij}, Z_{ij}) = Z_{ij} \beta_0 + \theta(X_{ij}); \quad (1)$$

$$E(Y_{ij} | X_{ij}, Z_{ij}) = E\{Y_{ij} | X_{ij}, Z_{ij}, (X_{ik}, Z_{ik})_{k \neq j}\} \quad (2)$$

- The function θ is unknown

- Pepe and Couper (1997, JASA) have noted that if (2) fails, then fitting (1) should largely be done using working independence.

- We have also allowed either Z or X to be measured with error.

- The results apply to general marginal models, but are illustrated here in the “linear” case for convenience.

- Most of the results apply to general marginal models, with varying time points, but panel data are used here to keep the notation simple
For cluster i, wave j, we have studied models of the general form

$$E(Y_{ij} | X_{ij}, Z_{ij}) = Z_{ij} \beta_0 + \theta(X_{ij})$$

We have also studied its fully nonparametric version

$$E(Y_{ij} | X_{ij}) = \theta(X_{ij})$$

We have studied specific problems but also made general conclusions (especially how intuition fails!)
Measurement Error

Nonparametrics

- \(E(Y_{ij} | X_{ij}) = \theta(X_{ij}) \)
- \(X_{ij} \) measured with error
- You observe in a cluster \(W = X + U \),
- \(U \sim \text{Normal}(0, \Sigma_u) \)
- If \(\theta \) were parametric, **except for simplest linear models**, likelihood analyses would require model for the **joint** distribution of the latent variables \(X \)
- In earlier work with Naisyin Wang, we showed that if you pretended the \(X \)'s were independent and they are not, even in the linear model biases could creep in.
The SIMEX method of Cook & Stefanski is completely general and can be applied to nonparametric regression.

- In the usual linear model it gives the “right” answer.

The SIMEX method is the “default” method in the literature.

- Models for latent X_{ij} not necessary.

But in this problem (panel data), it is an inefficient method, even for working independence.

- The exception is if the marginal distributions $(X_{ij})_{i=1}^{n}$ are independent of j.

$E(Y_{ij} | X_{ij}) = \theta(X_{ij})$

- X_{ij} measured with error
MEASUREMENT ERROR NONPARAMETRICS

- $E(Y_{ij} | X_{ij}) = \theta(X_{ij})$

- For panel data, a more efficient method is to run a separate SIMEX regression on each wave
 - Then take a weighted average of the estimated functions.
 - The weights are, of course, the inverses of the variances of the fits.

- Of course?
 - The individual SIMEX function estimates are asymptotically independent

- Note: intuition fails
Semiparametric Cluster-Level Covariate

- X is measured at the cluster level, e.g., baseline

\[E(Y_{ij} | X_i, Z_{ij}) = Z_{ij} \beta_0 + \theta(X_i) \]

- Methods are simple

 - For any fixed β, let $\tilde{\theta}(x, \beta, \Sigma)$ be the nonparametric regression of $Y_{ij} - Z_{ij} \beta$ on X_i with working covariance Σ.

 - Kernel methods exist for this, spline methods are well–known.

 - Then $\tilde{\beta}$ is the GLS of Y_{ij} on $Z_{ij} \beta + \tilde{\theta}(X_i, \beta, \Sigma)$ with working covariance Σ. **No iteration involved**

 - Semiparametric efficient in the Gaussian case, $\Sigma = \text{consistent estimate of the true covariance matrix}$
Semiparametric Cluster-Level Covariate

- X is measured at the cluster level, e.g., baseline

 $$E(Y_{ij}|X_i, Z_{ij}) = Z_{ij}\beta_0 + \theta(X_i)$$

- The method described is really a **semiparametric profile** method

- $\hat{\theta}(x, \beta, \Sigma)$ is the nonparametric regression of $Y_{ij} - Z_{ij}\beta$ on X_i with working covariance Σ.

- Then do a likelihood analysis (this is how to generalize)

 - mean function $Z_{ij}\beta + \hat{\theta}(X_i, \beta, \Sigma)$
 - Covariance matrix Σ

- Semiparametric efficient, essentially independent of what nonparametric regression you do.
INDIVIDUAL–LEVEL COVARIATE

- X is measured at the individual level

$$E(Y_{ij}|X_{ij}, Z_{ij}) = Z_{ij}\beta_0 + \theta(X_{ij})$$

- Semiparametric profile method??

 - For any fixed β, let $\tilde{\theta}(x, \beta, \Sigma)$ be the nonparametric regression of $Y_{ij} - Z_{ij}\beta$ on X_{ij} with working covariance Σ.

 - Kernel methods exist for this, spline methods are well–known.

 - Then $\tilde{\beta}$ is the MLE of Y_{ij} on $Z_{ij}\beta + \tilde{\theta}(X_{ij}, \beta, \Sigma)$, working covariance Σ. No iteration involved

 - Semiparametric efficient in the Gaussian case, $\Sigma = $ consistent estimate of the true covariance matrix?

 - Ah – No!!!! And it gets worse.
INDIVIDUAL–LEVEL COVARIATE

- $E(Y_{ij}|X_{ij}, Z_{ij}) = Z_{ij}\beta_0 + \theta(X_{ij})$

- Semiparametric profile method is semiparametric efficient only if the following occurs:
 - $E(Z_{ij}|X_{ij}) = E(Z_{ij}|X_{ij}, X_{ik})$ for $k \neq j$

- In general problems, the semiparametric efficient score is the solution to a Fredholm integral equation of the second kind, involving the regressions of Z_{ij} on X_{ik}

- We have no idea how to implement this in real life.
INDIVIDUAL–LEVEL COVARIATE

- $E(Y_{ij} | X_{ij}, Z_{ij}) = Z_{ij} \beta_0 + \theta(X_{ij})$

- Theoretically, the semiparametric profile method does not in general result in an estimate $\hat{\beta}$ which is asymptotically normal with mean β_0 and variance σ^2/n

- The problem is that there is a bias term from the non-parametric regression that does not disappear

- This is a standard feature in semiparametric problems
 - If you have a semiparametric inefficient estimator, standard nonparametric regressions will not work (theoretically)

- Curiously, none of this is a problem for working independence, although the method is inefficient.
INDIVIDUAL–LEVEL COVARIATE

- \(E(Y_{ij} | X_{ij}, Z_{ij}) = Z_{ij}\beta_0 + \theta(X_{ij}) \)

- If you have a semiparametric inefficient estimator, standard nonparametric regressions will not work (theoretically), except for working independence

- This does work to give asymptotically correct inference if you undersmooth the nonparametric regression, causing less bias but more variance

- Also a general result

- Easy to see how to do this with kernel methods: we give an explicit formula

- Multiply your bandwidth by \(n^{-2/15} \)!

- Not known how to do this with splines, or even whether it is necessary
Kernels and Splines

- $E(Y_{ij}|X_{ij}) = \theta(X_{ij})$

- The standard kernel methods are due to Severini & Staniswalis

- Let Σ be the working covariance matrix.

- Let $K_{ij}(x)$ be the diagonal matrix of kernel weights when fitting the function at x

- Function estimate is from the GLS (local) linear regression of Y_{ij} on X_{ij} with weights $K_{ij}^{1/2}(x) \Sigma^{-1} K_{ij}^{1/2}(x)$

- Whoops!
 - The best working method is working independence
Kernels and Splines

- It’s possible to do better, and use the correlations

- Remember splines:
 - Y: vector of responses for a panel member.
 - B: matrix of basis functions of the spline
 - Splines think $E(Y) = B \beta_0$
 - This means a linear transformation is a spline with identity covariance matrix
 \[
 E(\Sigma^{-1/2}Y) = E(Y_*) = B_* \beta_0 = \Sigma^{-1/2}B \beta_0
 \]
 - Estimate β_0 by penalized least squares

- Virtually any simulation you do shows that the GLS spline is more efficient than the working independence spline
 - Can we use the idea to improve kernels?
Kernels and Splines

- Assume common variance over waves
- Let $\tilde{\theta}(x)$ be a working independence, undersmoothesd kernel estimator
- $Z(\theta) = Y + (\Sigma^{-1/2} - I)\{Y - \theta(X)\}$ has mean $\theta(X)$ and identity covariance matrix
- Regress $Z_{ij}(\tilde{\theta})$ on X_{ij} with working independence
- Can be shown to have smaller variance than $\tilde{\theta}(x)$, and same theoretical bias behavior
Kernels and Splines

- X’s uniform on $[-2,2]$
- 3 waves, 50 (100) clusters/panels
- Autoregression, $\rho = 0.6$
- A typical simulation has $\theta(x) = \sin(2x)$ (not fit well by a low-order polynomial)
- Efficiency results $n = 50$ (100)
 - GLS spline / independence spline = 1.49 (1.50)
 - GLS kernel / independence kernel = 2.29 (1.39)
 - Efficiency GLS spline / GLS kernel = 1.47 (1.61)
- These are fairly typical: splines always seem better
Basic Conclusions

- We studied a particular class of marginal nonparametric and semiparametric models for correlated data.
- A central theme is that intuition from the iid case often fails, and in subtle ways.
- Each problem has to be thought through carefully, even if you assume working independence. Here are a few results:
 - Semiparametric profile methods need not be semiparametric efficient.
 - Blind application of error-correction methods is inefficient.
 - Classic kernel methods do not have the behavior one would expect.
 - Splines seem to be better than kernel methods.