THE STATISTICAL PROBLEM OF RELATING DIET AND DISEASE

IMS Special Invited Paper: Indianapolis

Raymond J. Carroll (http://stat.tamu.edu/~carroll)

- I have been fortunate to have many collaborators on this project, but especially I want to mention
 - L. Freedman (Bar–Ilan University)
 - V. Kipnis and D. Midthune (National Cancer Institute)
- See my web pages for relevant papers and detailed references to the work of others
SOME BACKGROUND

- My invitation for the SIP asked for a talk on "Applied Statistics or some interdisciplinary area"

- Be careful what you ask for!

- My first published paper was "Sequential density estimation at an unknown point”, in Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete

- My most recent tentatively accepted one is "The relationship of DNA adduct levels in proximal and distal regions of the colon"
SOME BACKGROUND

- Nutritional epidemiology has attracted interest from many skilled statisticians
 - The problem is interesting statistically, as I hope to convince you
 - The public health and policy implications are enormous
 - and you can talk about your research at parties
- The problem has been a, perhaps the major factor in the development of what is now a large literature on measurement error in nonlinear models.
- Instead of reviewing this progress, or describing recent technical advances, I will talk about the problem motivating all this work.
SOME BACKGROUND

- Here is a partial list of recent statistical researchers in nutritional epidemiology (with apologies in advance!)

 - **Northeast:** B. Rosner, D. Spiegelman, L. Ryan, T. Tosteson, E. Demidenko, K–Y Liang

 - **Northwest:** R. Prentice, C. Y. Wang, L. Shepard, M. Pepe

 - **California:** D. Stram, D. Thomas

 - **Fly–by states:** RJC, N. Wang, W. Fuller, S. Nusser, A. Carriquiry, W. Jiang

 - **Europe:** N. Day, D. Clayton

 - **NIH:** M. Gail, S. Wacholder
SOME BACKGROUND

- Many of the statistical methodology papers are not published in statistical journals.

- The reasons are many

- The outrageous time from submission to publication
 - 2+ years in statistics journals
 - About 1/2 the time in AJE

- The field really is interdisciplinary, and we want to reach the people who will use the methods.

- So, why have so many people worked on the problem?
OUTLINE

- Major issue: contradictory results for nutrient fat intake and breast cancer
- Methods for measuring nutrient intake
- Basic and simple statistical ideas
- Data available
- Old models (Ford Pintos) and new models (Ford Explorers)
- Results, methods, etc.
For some time, nutrient fat intake has been suspected of being a promotor of breast cancer.

- **Animal studies** show this clearly.

- **Ecological studies** show it clearly as well.

 - Countries with lower aggregate nutrient fat intake have lower rates of breast cancer.

 - Japanese women who move to the U.S. have higher rates of breast cancer, and higher nutrient fat intakes.

- **Case–control studies**, when pooled in a meta–analysis, also show a nutrient fat intake effect on breast cancer.
THE CONTROVERSY

- These arguments, plus other considerations, have led the National Institutes of Health to undertake the Women’s Health Initiative (WHI).

- The WHI is a huge clinical trial, one arm of which is to compare two groups prospectively over 10 years for incidence of breast cancer:

 - “Treated” Women who are counseled to undertake a “healthy diet”, one component of which is a massive reduction in nutrient fat intake (from 35% calories coming from fat for a typical American to 20% or less).
THE CONTROVERSY

- So, where is the controversy?

- **No study that follows women prospectively has ever found a statistically significant effect** of nutrient fat intake on breast cancer.

- One version of NHANES actually found the opposite!

- **Prospective**, nonrandomized studies have their own problems, but they are not subject to the potential confounding of ecological studies.

- They are also not subject to the clear biases inherent in **case–control** studies.
THE CONTROVERSY

 • 7 Studies, many thousands of women combined
 • No individual study or the combined data found a statistically significant relationship.

• More discouraging, ignoring statistical significance in a study of hundreds of thousands of women, the estimated effects of nutrient fat intake were tiny.

 • Estimated relative risks were very small, e.g., 1.10 for % Calories from Fat.

• In contrast, international comparisons show a fat effect (for % Calories from Fat, a relative risk of at least 1.86)
THE CONTROVERSY

- A great deal of the recent research in the area has focused on trying to reconcile the contradictory results.

- Specifically, there is great interest in trying to understand whether the prospective studies measure diet in a way that diet–disease relationships have reasonable statistical power.

- To understand the issue, you have to understand
 - How is dietary intake measured?
 - What statistical methods/models are used?
THE MEASUREMENT OF DIET

- The goal is to measure “usual nutrient intake”, which I call T (“truth”).

- This can only be defined operationally, as the average daily intake of a nutrient over a fixed period of time, e.g., one year.

- T is unobservable. It is impossible to monitor non-confined populations for their diet.

- The simplest method to ”measure” usual intake is the food frequency questionnaire, called Q.

- It is cheap, fast, and simple.

- Important: the typical prospective nonrandomized study will have many thousands of participants.

- The Nurses Health Study has 100,000 participants.
MEASURING DIET

- It is *generally* thought that other instruments are less biased (but more variable) (call them F')

- Multiple **Food diaries/ weighted food records**

- Multiple **24-hour food recalls**

- Multiple **Biomarkers**
 - The list is limited!
 - **Protein**: urinary nitrogen
 - **Caloric intake (energy)**: doubly-labelled water
 - Very, very expensive
MEASURING DIET

- Using many recalls, records or biomarkers is generally not feasible

- Thus the FFQ is used in essentially every large epidemiological study.

- We need to answer the question: how well can the FFQ measure usual nutrient intake \(T \), and how much does it matter that the FFQ does not measure \(T \)?
EFFECTS OF MEASUREMENT ERROR

• Since the FFQ does not measure usual nutrient intake exactly, we say that the FFQ is an error-prone instrument, subject to measurement error.

• In nutrition, measurement errors are large and consequential

• Usual intake cannot be measured exactly.

• Typically, the effect of measurement error is to cause two things:
 • A bias in estimating the nutrient–disease relationship
 • Loss of power, sometimes profound loss of power.
Effects of Measurement Error

Figure 1: **Observed (solid) and True (open) Data and lines**
BASIC STATISTICAL RESULTS

- Y = disease outcome indicator

- Logistic model for usual intake:

$$\text{pr}(Y = 1|T) = H(\beta_0 + \beta_1 T)$$

- This leads to a logistic model for the FFQ:

$$\text{pr}(Y = 1|Q) = H(\beta_0 + \lambda \beta_1 Q)$$

$\lambda = \text{reliability}$

$= \text{slope in regression of T on Q}$

- Often called regression calibration

- $\lambda < 1$ is called attenuation

- Reduces the problem to estimating the reliability
BASIC STATISTICAL RESULTS

\[
\begin{align*}
\text{pr}(Y = 1|T) &= H(\beta_0 + \beta_1 T) \\
\text{pr}(Y = 1|Q) &= H(\beta_0 + \lambda \beta_1 T)
\end{align*}
\]

\[\lambda = \text{slope in regression of T on Q}\]

- Relative risk attenuated
 \[
 \begin{align*}
 \text{Observed RR} &= (\text{True RR})^\lambda \\
 \text{True RR} &= (\text{Observed RR})^{1/\lambda}
 \end{align*}
 \]

- Sample sizes for fixed power generally go up like
 \[
 n \propto \frac{1}{\lambda^2}
 \]
DESIGNING STUDIES

- The typical way to design large prospective studies is through a **calibration study**

- A small number of people fill out the FFQ and a reference instrument (diary/record/recall)

- From this \(\lambda \) is estimated and the sample size is calculated.

- Obvious question: **does it matter what reference instrument you use in setting sample size?**
ESTIMATING RELIABILITY

\[\lambda = \text{reliability} \]

\[= \text{slope in regression of } T \text{ on } Q \]

- We need to estimate the reliability

- Assume we have a reference instrument unbiased for usual intake

 \[F = T + U \]

 - Error U is uncorrelated with the FFQ

 \[\lambda = \text{slope in regression of } T \text{ on } Q \]

 \[\lambda = \text{slope in regression of } F \text{ on } Q \]

- The literature typically assumes that records, diaries, recalls, biomarkers are reference instruments

- **Does it matter which you choose?**
Figure 2: **Reliability estimates when the Reference Instrument is a protein biomarker or a diary/record/recall. Note how the use of diary/record/recall underestimates the effect of measurement error.**
Figure 3: Sample size factors when the Reference Instrument is a protein biomarker or a diary/record/recall. If the factor = 3 for example, a study designed for 80% power using a diary/record/recall should really by increased 3 times in sample
WHAT IS GOING ON?

- The basic upshot of the previous slides is that if you use a diary/record/recall as a reference instrument, then you
 - Underestimate the effects of measurement error
 - Underpower your study
- It is of immense interest to understand why this is happening.
 - What makes diaries/records/recalls underperform as reference instruments for protein intake?
BASIC MODEL

- General agreement on certain properties of the FFQ.
 - flattened slope: People who eat large amounts of fat will under-report fat intake, and vice-versa.
 - measurement error: If you give a person an FFQ multiple times, you will not get the same answers.
 - Equation error or Person–specific bias: Two people with the same nutrient fat intake will not fill out the FFQ the same way: even if you administer the FFQ multiple times and average out the measurement errors, they won’t agree exactly.

- The model then is

\[
\text{FFQ} = \text{flattened slope} + \text{Person–specific bias} + \text{measurement error}
\]
BASIC MODEL

$$\text{FFQ} = \text{flattened slope} + \text{Person–specific bias} + \text{measurement error}$$

- In symbols, this becomes that the jth measurement on the ith person is

$$Q_{ij} = \beta_0 + \beta_1 T_i + r_i + \epsilon_{ij}$$

- Since they are also based on self–report, the same model can be entertained for diaries/records/recalls

 - Flattened slope
 - Person–specific bias, and this correlated with that of the FFQ
 - Measurement error
We add to the previous discussion that the biomarker is a true reference instrument.

- No **Flattened slope** = unbiasedness
- No **Person–specific bias**
- Classical **Measurement error**
BASIC MODEL

- Here is the model, in symbols

\[
Q_{ij} = \beta_0 + \beta_1 T_i + r_i + \epsilon_{ij}
\]
\[
F_{ij} = \alpha_0 + \alpha_1 T_i + s_i + \eta_{ij}
\]
\[
B_{ij} = T_i + U_{ij}
\]
\[
\text{corr}(r_i, s_i) \neq 0
\]

- The nutrition literature assumes \(\alpha_0 = 0, \alpha_1 = 1, s_i = 0, \text{corr}(r_i, s_i) = 0 \)

- These assumptions are testable!
SOME DATA

- We have access to 2 data sets with multiple biomarkers
 - One has a standard 7–day diary
 - One has a weighed food record
- I will display the results for the diary
 - The results for the weighed food record are similar
- For both data sets, our model
 - Not stat. significantly different from any model in which it is nested
 - Stat. significantly different from any of our sub-models (including standard model)
 - Has highest AIC and BIC
Figure 4: AIC for various models in the literature. Our model has highest value, also of BIC.
Figure 5: Likelihood ratio significance levels for model fit against nested hypotheses.
IS THE BIOMARKER UNBIASED?

- We have assumed that the biomarker urinary nitrogen has
 - No Flattened slope = unbiasedness
 - No Person–specific bias
 - Classical Measurement error

- This is not a testable hypothesis from the data we have.

- Person–specific bias seems not a serious issue

- Unbiasedness is considered ”common” knowledge among nutritionists
 - Standard textbooks
 - (very) Small feeding studies
WHAT IS LEFT?

- Nutritional epidemiology regresses disease outcomes on a nutrient and \textit{energy = caloric intake simultaneously}

 - Effects of measurement error complex
 - Correlated variables, correlated errors, can cause almost anything to happen

- Our studies do not have the energy biomarker (doubly labelled water) measured. If they did:

 - there is still a ”reliability” for the nutrient
 - our models can be generalized

- An NCI study will be completed in about a year, and a European study in about 2 years

 - Then we will ”know” whether our univariate results generalize to the bivariate regression
WHAT ABOUT FAT INTAKE?

- There is no biomarker for fat

- Energy = Fat + Protein + Carbs + Alcohol

- Not too unreasonable to suppose that if FFQ’s are much less precise than previously suspected for protein, then they are much less precise for fat
WHAT ABOUT BODY MASS?

• A body mass index (BMI) effect on attenuation has been hypothesized
 • The idea is that lean people are less biased and variable, and their reliability should therefore be higher.

• We use a Prentice–idea and split data into 3 BMI ter-tiles and compute the reliability

• We have also developed a **lovely nonparametric regression local estimating equation** estimation and testing methodology and theory
 • Under review since February
 • You may see it in 2 years

• The results are simple, see next graph
Figure 6: *Average reliability of 11 cohorts of men and women, for body mass index groups.*
CONCLUSIONS

- Most nutritional epidemiology studies are designed on the basis of and correct for measurement error using diaries/records/recalls as reference instruments

- These methods, like the FFQ, and based on self–report

- Our results for protein confirm that these have two major undesirable properties

 - **Flattened slope**

 - **Person–specific bias**, and this correlated with that of the FFQ ($\rho(r, s) > 0.6$)

- Univariate results suggest that diaries/records/recalls

 - Overestimate the reliability of the FFQ

 - Understate the sample size needed to get 80% power by factors of 2–9
CONCLUSIONS

- The univariate results then suggest that the FFQ is a particularly insensitive instrument

- **Worst Case:** In a major UK study, with 100 women, we estimate the reliability to be less than 10%
 - This means that an observed relative risk of 1.10 is consistent with a true relative risk of 3.10

- **Worst Case:** In the same UK study, we estimate that the sample size required for fixed power is 9 times larger than what would be designed if the diary were the reference instrument

- If these results hold up in the bivariate (protein + energy) analysis, profound implications for nutritional epidemiology
 - Can only disease–nutrient relationships with huge relative risks be detected?