Generalized Partially Linear Single-Index Models

R. J. Carroll, Jianqing Fan, Irène Gijbels, and M. P. Wand *

July 3, 1996

Abstract

The typical generalized linear model for a regression of a response \(Y \) on predictors \((X, Z) \) has conditional mean function based upon a linear combination of \((X, Z) \). We generalize these models to have a nonparametric component, replacing the linear combination \(\alpha_0^T X + \beta_0^T Z \) by \(\eta_0(\alpha_0^T X) + \beta_0^T Z \), where \(\eta_0(\cdot) \) is an unknown function. We call these generalized partially linear single-index models (GPLSIM). The models include the “single-index” models, which have \(\beta_0 = 0 \). Using local linear methods, estimates of the unknown parameters \((\alpha_0, \beta_0) \) and the unknown function \(\eta_0(\cdot) \) are proposed, and their asymptotic distributions obtained. Examples illustrate the models and the proposed estimation methodology.

Key words and phrases: Asymptotic Theory; Generalized Linear Models; Kernel Regression; Local Estimation; Local Polynomial Regression; Nonparametric Regression; Quasilikelihood.

Short title. Partly Linear Models

*R. J. Carroll is Professor of Statistics, Nutrition and Toxicology, Department of Statistics, Texas A&M University, College Station, TX 77843-3143. Jianqing Fan is Associate Professor, Department of Statistics, University of North Carolina, Chapel Hill, NC 27599-3260. Irène Gijbels is Associate Professor, Institut de Statistique, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium. M. P. Wand is Senior Lecturer, Australian Graduate School of Management, University of New South Wales, Sydney 2052, Australia. Carroll’s research was supported by a grant from the National Cancer Institute (CA-57030). Fan’s research was supported by a grant from the National Science Foundation (DMS-9203135) and an NSF Postdoctoral Fellowship. Gijbels’ research was supported by the ‘Programme d’Action de Recherche Concertée’ (No. 93-98-164). We thank the referee and associate editor for many helpful comments which significantly improved the paper.
1 INTRODUCTION

1.1 Motivation

The Framingham Heart Study (Kannel, et al., 1986) consists of a series of exams taken two years apart. For purposes of illustration, we use Exam #3 as the baseline. There are 1,615 men aged 31–65 in this data set, with the outcome indicating the occurrence of coronary heart disease (CHD) within an eight-year period following Exam #3; there were 128 such cases of CHD. Predictors employed in this example are the patient’s age, smoking status and serum cholesterol, in addition to systolic blood pressure (SBP) at Exam #3, the latter being the average of two measurements taken by different examiners during the same visit.

For these data, let the response Y be the incidence of CHD, and let Z be the indicator of smoking status. The other covariates used are a vector, denoted by X, consisting of the three variables X_1 (age of patient), X_2 (=log(SBP – 25)) and X_3 (=log(cholesterol level)). An ordinary logistic regression model says that the logit of CHD probabilities satisfies

$$\logit \{P(\text{CHD}|X, Z)\} = \gamma_0 + \alpha_0^T X + \beta_0 Z.$$ \hspace{1cm} (1)

The advantage of the linear–logistic models lies not only in its computational convenience, but more importantly in the ease of interpretation of the model parameters, and our ability to make inference about them.

As we shall see in Section 3.2, there is some curvature not captured by this linear-logistic model. This article is concerned with simple semiparametric alternatives to the fully parametric model (1) which allow for such curvature, but yet retain the ease of interpretation of parameters such as α_0 and β_0. In this particular example, our generalization consists of two parts: (a) the linear combination $\alpha_0^T X$ enters the model via a nonparametric link function; and (b) smoking status $\beta_0 Z$ enters the model as a logistic offset. Combining (a) and (b) suggests the simple model

$$\logit \{P(\text{CHD}|X, Z)\} = \eta_0(\alpha_0^T X) + \beta_0 Z,$$ \hspace{1cm} (2)
for some completely unknown function η_0. Model (2) retains much of the ease of interpretation of model (1), in the sense that nonzero components of α_0 or β_0 indicate a “significant” predictor of CHD, but model (2) allows for curvature in the logit.

The purpose of this article is to introduce versions of (2) for generalized linear and quasilikelihood models, describe a way to fit such models, and derive an asymptotic theory which allows inference about the parameters (α_0, β_0). In the rest of this section, we will describe the general class of models of interest to us here, which we call generalized partially linear single-index models, or GPLSIM. We show that these models are a natural combination and generalization of simpler models already in the literature, namely single-index models and partially linear models. Further sections deal with fitting and making inference about GPLSIM. In particular, we will exhibit a class of asymptotically optimal estimators of the unknown parameters.

1.2 The Models

We consider semiparametric versions of generalized linear models where a response Y is to be predicted by covariates (X, Z), where X and Z are possibly vector-valued predictors of lengths p and q, respectively. Generalized linear models are derived as follows. The conditional density of Y given $(X, Z) = (x, z)$ belongs to a canonical exponential family

$$f_{Y|X,Z}(y|x,z) = \exp \left[y\theta(x,z) - B\{\theta(x,z)\} + C(y) \right]$$

for known functions B and C. In parametric generalized linear models, the unknown regression function $\mu(x,z) = E(Y|X = x, Z = z) = B'(\theta(x,z))$ is modeled linearly via a link function g by

$$g \{\mu(x,z)\} = \gamma_0 + \alpha_0^T x + \beta_0^T z.$$ \hspace{1cm} (4)

If $g = (B')^{-1}$ (the inverse function of B'), then g is the canonical link function. See McCullagh and Nelder (1989) for more details.

In many practical situations, however, the linear model (4) is not complex enough to capture the underlying relationship between the response variable and its associated covariates. Indeed
some components can be highly nonlinear. A natural generalization of (4) is to allow only some
of the predictors to be modeled linearly, with others being modeled nonlinearly. This leads us to
consider the class of generalized partially linear single-index models

\[g\{\mu(x,z)\} = \eta_0(\alpha_0^T x) + \beta_0^T z, \text{ with } \|\alpha_0\| = 1. \]

(5)

The restriction that \(\|\alpha_0\| = 1 \) is required for identifiability.

Model (5) is flexible enough to cover a variety of situations. When \(\beta_0 = 0 \), or equivalently there
are no predictors \(Z \), (5) is simply a generalized linear model with an unknown link function. The
problem of the “missing link” function in generalized linear models has been considered previously
by Weisberg and Welsh (1994). In other contexts, when only the mean function is specified, this
problem is known as the nonparametric single-index model, and has been considered by Härdle,
Hall and Ichimura (1993). The appeal of these models is that by focusing on an index \(\alpha_0^T X \),
the so-called “curse of dimensionality” in fitting multivariate nonparametric regression functions
is avoided; albeit at the cost of some loss in flexibility. Another recent paper on estimation in the
framework of single-index models is Bonneu, Delecroix and Hristache (1995).

The meaning of the single-index parameter \(\alpha_0 \) deserves a short explanation. Here we basically
follow the lead of Li (1991), who notes three points: (i) clearly, as a practical matter, lowering
dimensionality before fitting data is important (Li’s remark 1.2 goes even further and suggests that
in many cases this is the crucial step), and the appeal of single-index models is that they provide
a readily interpretable means of performing this reduction; (ii) if \(\eta_0(\cdot) \) is monotone, \(\alpha \) takes on the
same general meaning as “effect” parameters as would occur in ordinary linear models; and (iii)
given an estimated “direction” \(\alpha_0 \), model criticism becomes a more manageable proposition.

Severini and Staniswalis (1994) consider model (5) but with \(\eta_0(\alpha_0^T x) \) replaced by \(\gamma(x) \), a \(p \)-

variate function, while Hunsberger (1994) considers model (5), but with \(X \) scalar, so that \(p = 1 \)
and \(\alpha_0 = 1 \). In this case, model (5) becomes

\[g\{\mu(x,z)\} = \eta_0(x) + \beta_0^T z. \]

(6)
Model (6) is particularly popular in the spline literature. See, for example, Wahba (1984), Heckman (1986), Chen (1988), Speckman (1988) and Cuzick (1992), where it is called the partial spline model or the partially linear model. Recently Mammen and van de Geer (1995) studied penalized quasilikelihood estimation in partially linear models.

A different approach to modeling (and coping with the “curse of dimensionality”) is through generalized additive models (GAM), see Hastie and Tibshirani (1990). These models replace the nonparametric component of (5) by a sum of nonparametric functions over the components of X. When they adequately fit the data, the GPLSIM (5) have the obvious advantage of being more parsimonious, although clearly more difficult to compute given the existence of commercial software for GAM. We have in our own work combined the two to fit models of the form (5), with an estimator $\hat{\alpha}$ of α_0 obtained using our techniques, and then GAM applied to Z and $\hat{\alpha}^T X$. In this context, one can think of our techniques as providing a preliminary dimension reduction. Clearly, an important issue for future work is to test for model misspecification of the GPLSIM against a richer class of models.

There are also various schools of thought about the need to employ parsimonious parametric models (see Royston and Altman, 1994, and the discussions therein). GPLSIM fall somewhere between the fully parametric flexible models of Royston and Altman (1994) and the almost fully nonparametric models of Hastie and Tibshirani (1990).

1.3 Aim and Outline

In the context of the unknown link function, the single-index model, or the model with $\alpha_0 = 1$, our method differs from those previously cited in that we use local linear rather than simple kernel regression methods. Our aim is to estimate the unknown parameters α_0 and β_0 and the unknown function $\eta_0(\cdot)$ in the full model (5), thus generalizing both the single-index model and the partially linear model. Our work also applies to quasilikelihood models, where only the relationship between the mean and the variance is specified. In this situation, estimation of the mean can be achieved by
replacing the conditional loglikelihood \(\ln f_{Y|X,Z}(y|x,z) \) by a *quasilikelihood function* \(Q \{ \mu(x,z), y \} \). If the conditional variance is modeled as \(\text{var}(Y|X=x,Z=z) = \sigma^2 V \{ \mu(x,z) \} \) for some known positive function \(V \), then the corresponding quasilikelihood function \(Q(w,y) \) satisfies

\[
\frac{\partial}{\partial w} Q(w,y) = (y - w) / V(w) .
\]
(7)

(McCullagh and Nelder 1989, Chapter 9). The quasiscore (7) possesses properties similar to those of the usual likelihood score function.

In Section 2, we propose estimation procedures, and their performance is illustrated in section 3 via simulation and examples. Sections 4 and 5 describe distribution theory. Section 6 states the result showing asymptotic efficiency of the parametric estimators (in the semiparametric sense). In Section 7 methods for estimating the standard errors of the parametric and nonparametric parts of the model are provided. The usual method for estimating standard errors is to derive a formula for the asymptotic covariance matrix, and then plug into this formula to obtain an estimated covariance matrix. Unfortunately, as a general principle this has the drawback that the formula for the asymptotic covariance matrix requires additional nonparametric regressions. We derive consistent covariance matrix estimates which avoid these additional nonparametric regressions. Some implementation details are given in Sections 3.2 and 8. The issue of incorporating interactions in the model is discussed in Section 9. Proofs are given in the appendix.

2 MAXIMUM QUASILIKELIHOOD

2.1 The Estimation Method

Under model (5), the primary interest is to estimate \(\alpha_0 \), \(\beta_0 \) and \(\eta_0(\cdot) \). Since \(\eta_0(\cdot) \) is modeled nonparametrically, it is natural to consider *local* quasilikelihood. However, efficient estimation of the global parameters \(\alpha_0 \) and \(\beta_0 \) requires using all data points, and hence should rely on the *global* quasilikelihood. In local quasilikelihood, we will approximate \(\eta_0(\cdot) \) locally by a linear function

\[
\eta_0(v) \approx \eta_0(u) + \eta_0'(u)(v - u) \equiv a + b(v - u) .
\]
for v in a neighborhood of u, where $a = \eta_0(u)$ and $b = \eta'_0(u)$. Let K be a symmetric probability density function, and $K_h(t) = K(t/h)/h$ be a rescaling of K. The function K is usually called a kernel function and the parameter h is called the bandwidth. For $i = 1, \ldots, n$, a sample (Y_i, X_i, Z_i) is observed. The local quasilikelihood is really a weighted quasilikelihood, with weights $K_h(\alpha^T X_i - u)$. The estimation procedure for estimating α_0, β_0 and $\eta_0(\cdot)$ is described in the following algorithm.

STEP 0: (Initialization step) Fit a parametric generalized linear model to obtain initial values $(\hat{\alpha}_1, \hat{\beta})$ and set $\hat{\alpha} = \hat{\alpha}_1/\|\hat{\alpha}_1\|$.

STEP 1: Find $\hat{\eta}(u; h, \hat{\alpha}, \hat{\beta}) = \hat{\alpha}$ by maximizing the local quasilikelihood

$$\sum_{i=1}^{n} Q \left[g^{-1} \left\{ a + b(\hat{\alpha}^T X_i - u) + \hat{\beta}^T Z_i \right\}, Y_i \right] K_h(\hat{\alpha}^T X_i - u),$$

with respect to a and b. We take h to be an estimate of the bandwidth that is optimal for estimation of (α_0, β_0).

STEP 2: Update $(\hat{\alpha}, \hat{\beta})$ by maximizing

$$\sum_{i=1}^{n} Q \left[g^{-1} \left\{ \hat{\eta}(\alpha^T X_i; h, \hat{\alpha}, \hat{\beta}) + \beta^T Z_i \right\}, Y_i \right],$$

with respect to α and β.

STEP 3: Continue Steps 1 and 2 until convergence.

STEP 4: Fix (α, β) at its estimated value from Step 3. The final estimate of $\eta_0(\cdot)$ is $\hat{\eta}(u; h, \hat{\alpha}, \hat{\beta}) = \hat{\alpha}$ where (\hat{a}, \hat{b}) is obtained by maximizing (8). At this final step we take h to be an estimate of the bandwidth that is optimal for estimation of $\eta_0(\cdot)$ when α_0 and β_0 are known.

Thus the basic idea behind the above algorithm is simple: estimate $\eta_0(\cdot)$ locally via (8), and then use all the data and (9) to estimate (α_0, β_0), with $\hat{\eta}(\cdot)$ replacing $\eta_0(\cdot)$. An alternative estimator will be discussed briefly in Section 4.1. We recommend calculating $\hat{\eta}(\cdot; h, \hat{\alpha}, \hat{\beta})$ at a fixed, but fine grid of points and using linear interpolation to calculate the other values of $\hat{\eta}(\cdot; h, \hat{\alpha}, \hat{\beta})$ when needed.

The estimation procedure involves the choice of a smoothing parameter on two quite different levels. In Steps 1–2 of the algorithm the aim is estimation of the parametric part (α_0, β_0) and hence here the bandwidth h should be optimal for this task. In Step 4, however, the goal is to estimate the nonparametric part $\eta_0(\cdot)$, and hence the bandwidth h should be optimal in this respect.
Finally, we mention that in analogy with Severini & Staniswalis (1994), maximizing
\[
\sum_{i=1}^{n} Q \left[g^{-1} \left\{ \hat{\eta}(\alpha^T X_i; h, \alpha, \beta) + \beta^T Z_i \right\}, Y_i \right],
\]
instead of (9), leads to estimates that are asymptotically equivalent to those resulting from the above algorithm. This fact will be used later on, but for brevity we do not provide the calculations. The statement is true when working with the function \(Q \) as in (7), but would no longer hold for completely arbitrary functions \(Q \).

2.2 Alternatives

The algorithm suggested here uses local linear weighted fits based upon kernel weights with a fixed global bandwidth. One may replace these by more sophisticated smoothers, such as those using higher degree polynomials, locally varying bandwidths, nearest neighbor weights, etc. Other non-kernel smoothers, such as splines may also be used.

3 NUMERICAL EXAMPLES

3.1 Simulation

We ran a small simulation study with \(n = 200 \) and data generated according to the “sine-bump” model
\[
Y_i = \sin \{ \pi (\alpha^T X_i - A)/(B - A) \} + \beta Z_i + \varepsilon_i
\]
where the \(X_i \) were trivariate with independent uniform \((0,1)\) components, \(Z_i = 0 \) for \(i \) odd and \(Z_i = 1 \) for \(i \) even, \(\varepsilon_i \) were normally distributed with mean zero and variance equal to 0.01. The parameters were \(\alpha = (1,1,1)/\sqrt{3} \) and \(\beta = 0.3 \). We took \(A = \sqrt{3}/2 - 1.645/\sqrt{12} \) and \(B = \sqrt{3}/2 + 1.645/\sqrt{12} \) to ensure that the design was relatively thick in the tails. The number of replications was 100.

In this particular simulation, the GPLSIM estimates are far more accurate than the ordinary least squares (OLS) estimates, which are badly biased. For example, consult Table 1, where we display the results of five randomly selected outcomes of the simulations.
Not only are the GPLSIM estimates better than the OLS estimates, they do a reasonably effective job of fitting the data, see Figure 1.

Finally, we evaluated the accuracy of the estimated standard errors (defined in Section 7). In this simulation, the coverage probabilities for nominal 95% confidence intervals was 94%, 96% and 98% for the three components of X, and 94% for Z. At least for this sample size, and this model, the standard error estimates seem reasonably accurate.

3.2 Example: Framingham Data

The Framingham data were described in Section 1.1; Y corresponds to incidence of CHD and Z to smoking status. In the discussion below we will use disease and smoker to denote these variables. As covariates we used X_1, X_2 and X_3 as described in Section 1.1 with each variable scaled to lie between 0 and 1. To avoid problems with sparse data near the boundaries, after some experimentation only those data with a single-index value in range $[0.4, 1.2]$ were used for curve estimation. This excluded 45 of the 1615 observations. We applied our methodology to the model:

$$
\text{logit}\{P(\text{disease} = 1|\text{age}, \text{trblood}, \text{logchol}, \text{smoker})\} = \eta_0\{\alpha_{01}(\text{age}) + \alpha_{02}(\text{trblood}) + \alpha_{03}(\text{logchol})\} + \beta_0(\text{smoker}).
$$

We used the bandwidth h_{opt} defined in (17), obtaining nearly identical results with or without the modification suggested in the discussion centering on (18). The results of our analysis are displayed in Table 2. For illustrative purposes, we have compared these results to those obtained by ordinary logistic regression, which in this context is simply another way of estimating the “direction” α_0. The ordinary logistic regression coefficients for age, trblood and logchol have been made comparable to the single-index analysis by making their Euclidean norm equal to 1.0, and their standard error estimates have been adjusted accordingly.

Figure 2 shows the estimates of (a) η_0 and (b) the conditional probability of heart disease for both smokers and non-smokers. An interesting feature of this figure is the curvature of $\hat{\eta}$ when the
single-index becomes greater than 0.8. This curvature has been checked in two ways. First, we used the ordinary logistic regression estimates to define a single-index, and then to this index and the smoking indicator fit a partially linear model to the data using the gam procedure of S-plus. The resulting estimate also showed curvature, of the same form as displayed in Figure 2. We also fit an ordinary generalized additive model with nonparametric components in age, trblood and logchol, and a nonlinear structure with the “flatness” of Figure 2 was found for age.

We compared the GPLSIM fit to others as follows. First, we formed the estimated single-index $U = \alpha^T X$, then ran a partially linear model in U (nonparametric) and Z (parametric) using the default “gam” procedure in S-plus. We also ran a standard GAM with smoothers for each of X_1, X_2 and X_3, with Z entering as a parametric offset. In this case, surprisingly the GPLSIM had a smaller estimated deviance than the GAM, even though it had ≈ 8 more degrees of freedom.

One can also view this example as an informal model diagnostic of the logistic linear regression model via embedding it to the GPLSIM. Our result indicates certain departures from the logistic linear regression model; using the same informal method described in the previous paragraph, the linear logistic and the full GAM were not statistically significantly different, but the linear logistic and the GPLSIM are statistically significantly different.

3.3 Example: Dust Irritation Data

In occupational medicine one important issue is the assessment of the health hazard of specific harmful substances in a working area. We consider here the specific problem of estimating risk of bronchitis in a dust burdened mechanical engineering plant in Munich.

The regressor variables X are X_1, the logarithm of 1.0 plus the average dust concentration in the working area over the period of time in question, and X_2, the duration of exposure. Also available was smoking status (Z). The data are described by Ulm (1991) as a possible example of a threshold regression model, and further analyzed by Küchenhoff & Carroll (1997). There were 1,246 observations. Little correlation among the variables was observed.
The results of an ordinary logistic and GPLSIM fit to the data are given in Table 3, while Figure 3 gives the logit and probability of bronchitis for smokers and nonsmokers. There is an important curvature in these data, which are not fit well by an ordinary logistic model. As suggested by Küchenhoff & Carroll (1997), this curvature may reflect a threshold effect in concentration. The single-index model provides a slightly worse fit than a full GAM, although not a statistically significant one; we compared these using the deviances from GAM as implemented in S-plus, ignoring the effect of estimation of the single-index. When compared to the GAM, an ordinary logistic model had an observed level of significance

4 DISTRIBUTION THEORY: NONPARAMETRIC PART

4.1 Introduction

When \(\alpha_0 \) is given as is the case in partially linear models or can be estimated at reasonable accuracy (by for example the average derivative method or sliced inverse regression), the following simple estimator is attractive from an implementation point of view. With the given value of \(\tilde{\alpha} \), find \(\tilde{\eta}(u; h, \tilde{\alpha}) = \tilde{\alpha} \) by maximizing the local quasilikelihood

\[
\sum_{i=1}^{n} Q \left[g^{-1} \left\{ a + b(\tilde{\alpha}^T X_i - u) + \beta^T Z_i \right\}, Y_i \right] K_h(\tilde{\alpha}^T X_i - u),
\]

(11)

with respect to \(a, b \) and \(\beta \). Since \(\tilde{\beta} \) here is obtained locally, it can be improved to use all the data, as follows. Given \(\tilde{\alpha} \) and the estimator \(\tilde{\eta}(u; h, \tilde{\alpha}) \) one estimates \(\tilde{\beta} \) by maximizing

\[
\sum_{i=1}^{n} Q \left[g^{-1} \left\{ \tilde{\eta}(\tilde{\alpha}^T X_i; h, \tilde{\alpha}) + \beta^T Z_i \right\}, Y_i \right],
\]

(12)

with respect to \(\beta \). We refer to this noniterative procedure as the one-step estimator and to the algorithm of Section 2.1 as the fully iterated algorithm. Based upon the distribution theory provided in this and the next section it will become clear that both algorithms have their own merits: the fully iterated algorithm is at least as efficient as the one-step algorithm, but the one-step estimator achieves the same efficiency in some important applications with added computational convenience.
Note that in (11) we are maximizing the local quasilikelihood with respect to \((a, b, \beta)\). This reflects the main difference with the estimation algorithm of Section 2.1 where we maximize with respect to \((a, b)\) only. The above idea can also be expanded into the case where \(\alpha\) is unknown by iteratively maximizing (11) and (12): One needs only to replace the first \(\hat{\alpha}\) in (12) by \(\alpha\) and maximize the modified (12) with respect to \(\alpha\) and \(\beta\). See an earlier version of this paper for details (Carroll et al. 1995).

In this section, we investigate properties of the estimators of the nonparametric part \(\eta_0(\cdot)\) of (5) when \(\alpha_0\) is either known or estimated to the order \(O_P(n^{-1/2})\) (i.e. at the usual parametric rate). The distribution theory depends on two cases: (a) the one-step approach when \(\beta_0\) is estimated locally as in (11); and (b) the fully iterated approach (8) where \(\beta_0\) is estimated at parametric rates, and thus \(\eta_0(\cdot)\) can be estimated asymptotically as well as if \(\beta_0\) were known.

4.2 One-Step Estimate of the Nonparametric Part

Let \(\rho_1(t) = \left\{ \frac{dg^{-1}(t)}{dt} \right\}_t / [\sigma^2 V \{g^{-1}(t)\}]\), \(\ell = 1, 2\), and denote by \(f(\cdot)\) the marginal density of \(U = \alpha_0^T X\). For the model (3) with the canonical link function \(g = (B')^{-1}\), we have \(\rho_2 \{g(\mu)\} = \sigma^2 V(\mu)\).

Define \(\kappa_j = \int \psi K(t) dt, \nu_j = \int \psi K^2(t) dt, \) and

\[
\begin{align*}
\Sigma(u) & = E \left[\rho_2 \left\{ \eta_0(U) + \beta_0^T Z \right\} \left(\begin{array}{c} 1 \\ Z \\ ZZ^T \end{array} \right) \left| U = u \right. \right] ; \\
q_1(x, y) & = \left\{ y - g^{-1}(x) \right\} \rho_1(x) ; \\
m_i & = m_i(U_i) = \eta_0(U_i) + \beta_0^T Z_i ; \\
W_i & = \text{first element of the vector } q_1(m_i, Y_i) \Sigma^{-1}(u)(1, Z_i^T)^T ; \\
d(u) & = \text{first diagonal element of the matrix } \Sigma^{-1}(u) .
\end{align*}
\]

Theorem 1: Consider the maximizer of the local quasilikelihood (11). Then, as \(n \to \infty, \ h \to 0\) and \(nh \to \infty\), under Condition 1 as stated in the appendix,

\[
(nh)^{1/2} \left(\left[\frac{\hat{\eta}(u) - \eta_0(u)}{\beta - \beta_0} - \frac{\kappa_2}{2} \eta_0''(u) h^2 \Sigma^{-1}(u) E \left[\rho_2 \left\{ \eta_0(U) + \beta_0^T Z \right\} \left(\begin{array}{c} 1 \\ Z \end{array} \right) \left| U = u \right. \right] \right) \to \mathcal{N}(0, 1) .
\]
\[D \rightarrow \text{Normal} \left[0, \frac{\nu_0}{f(u)} \Sigma^{-1}(u) \right]. \]

In fact, we have the asymptotic expansion

\[\hat{\eta}(u) - \eta_0(u) = (\kappa_2/2)\eta''_0(u)h^2 + \frac{1}{nf(u)} \sum_{i=1}^{n} W_i K_h(\alpha_0^T X_i - u) + o_P \left((nh)^{-1/2} + h^2 \right), \]

and hence

\[(nh)^{1/2} \left\{ \hat{\eta}(u) - \eta_0(u) - \frac{\kappa_2}{2} \eta''_0(u)h^2 \right\} \overset{D}{\rightarrow} \text{Normal} \left[0, \frac{\nu_0}{f(u)} d(u) \right]. \]

Remark 1: Consider the situation that \(\sigma^2 V(\mu) \equiv \sigma^2 \) and \(E(Z|X) = 0 \). For this normal model with the identity link, the quasilikelihood estimates are the ordinary least squares estimates. It is easily seen that \(d(u) = \sigma^2 \). Hence, in this particular case, even though \(\beta_0 \) is estimated locally, the bias and variance of \(\hat{\eta}(u) \) are the same as if \(\beta_0 \) were known.

Remark 2: The rate results in Theorem 1 continue to hold when the variance function is misspecified, i.e. \(\text{var}(Y|X,Z) \neq \sigma^2 V \{ \mu(X,Z) \} \). One has to change the matrix \(\Sigma(u) \) to reflect the misspecification of the variance function. See Fan, et al. (1995) for such a modification.

4.3 Fully Iterated Estimate of the Nonparametric Part

For the fully-iterative estimator, the parametric component can be estimated at root-\(n \) rate. Thus in Step 4 the local smoothing is carried out as if \(\alpha_0 \) and \(\beta_0 \) were known. The results for the nonparametric component are easy: (16) continues to hold replacing \(d(u) \) by \(d_*(u) = \left(E \left[\rho_2 \left\{ \eta_0(u) + \beta_0^T Z \right\} |U = u \right] \right)^{-1} \). This result coincides with the univariate result given in Fan, et al. (1995).

4.4 Bandwidth Selection

The results in the previous subsection suggest bandwidth estimators in the spirit of that of Ruppert, Sheather and Wand (1995). For example, consider estimation of \(\eta_0(\cdot) \) at the final step. For a given function \(w(\cdot) \) with compact support, minimizing the asymptotic weighted mean squared error with
weight \(f(\cdot)w(\cdot) \) yields the optimal global bandwidth

\[
\hat{h}_{\text{opt}} = C(K)n^{-1/5} \left\{ \frac{\int d_s(u)w(u)du}{\int \eta_0''(u)^2 f(u)w(u)du} \right\}^{1/5},
\]

(17)

where \(C(K) = (\nu_0 \kappa_2^{-2})^{1/5} \).

The Framingham example in Section 3.2 treats the case where both \(Y \) and \(Z \) are 0 – 1 variables, so we briefly describe a rough rule for choosing the bandwidth in this context. Extension to other contexts is straightforward. For the Bernoulli likelihood with logit link,

\[
d_s(u)^{-1} = \frac{e^{\eta_0(u)}(1 - \zeta_0(u))}{\{1 + e^{\eta_0(u)}\}^2} + \frac{e^{\eta_0(u) + \beta_0 \zeta_0(u)}}{\{1 + e^{\eta_0(u) + \beta_0}\}^2},
\]

where \(\zeta_0(u) = \Pr(Z = 1|U = u) \). Let \(\hat{\eta}_Q(\cdot) \) be the quadratic and \(\hat{\zeta}_L(\cdot) \) be the linear logistic regression estimates of \(\eta_0(\cdot) \) and \(\zeta_0(\cdot) \) respectively. Let \(\hat{\beta} \) be the estimate of \(\beta_0 \) from the previous iteration. Then the integral on the numerator of (17) can be estimated by direct replacement of \(\eta_0(\cdot), \zeta_0(\cdot) \) and \(\beta_0 \) by \(\hat{\eta}(\cdot), \hat{\zeta}_L(\cdot) \) and \(\hat{\beta} \), respectively. An estimate for the integral on the denominator is \(n^{-1} \sum_{i=1}^{n} \hat{\eta}_Q''(U_i)^2 w(U_i) \). A sensible choice for \(w \) is the indicator function on the range of the \(U_i \); with about 10% clipped off either end to avoid boundary problems. This results in an estimated bandwidth, \(\hat{h}_{\text{opt}} \), for use in Step 4 of the fully iterated algorithm. The rule will give close to optimal answers when the true logit \(\{\eta_0(\cdot)\} \) and logit \(\{\zeta_0(\cdot)\} \) are approximated reasonably well by a quadratic and straight line, respectively.

A sensible rule for choice of \(h \) in Step 1 is more difficult. A relatively ad hoc possibility is

\[
\tilde{h}_{\text{opt}} \times n^{1/5} \times n^{-1/3} = \tilde{h}_{\text{opt}} \times n^{-2/15},
\]

(18)

since this guarantees that the required bandwidth has correct order of magnitude for the conjectured optimal asymptotic performance (see Remark 3 in Section 5.1 for more details).

5 DISTRIBUTION THEORY: PARAMETRIC PARTS

We now study estimation for the parametric components \(\alpha_0 \) and \(\beta_0 \). We treat separately the
one-dimensional case \((p = 1)\), for which \(\alpha_0 = 1\) and \(\alpha_0^T X = X\). Since in this case the one-step estimator has the advantage of being noniterative we also provide its distribution theory.

5.1 The Scalar \(X\) Case: Partially Linear Models

The next theorem for the one-step estimate shows that one iteration leads already to a root-\(n\) consistent estimator.

Theorem 2: Let \(\hat{\beta}\) be the one-step estimate which maximizes the quasilikelihood (12) with \(\alpha = 1\). Since \(U = \alpha_0^T X = X\), write \(\Sigma(U) = \Sigma(X)\) in Theorem 1. Under Conditions 1 and 2 in the appendix, as \(n \to \infty\), \(nh^4 \to 0\) and \(nh^2/\log(1/h) \to \infty\),

\[
n^{1/2}(\hat{\beta} - \beta_0) \xrightarrow{D} N(0, B^{-1} \Sigma_0 B^{-1}),
\]

where \(B = E \left\{ \rho_2 \left\{ \eta_0(X) + \beta_0^T Z \right\} ZZ^T \right\} \),

\[
\Sigma_0 = B + E \left\{ \gamma(X) \gamma^T(X) e_1^T \Sigma^{-1}(X) e_1 \right\}, \quad \gamma(u) = E[\rho_2 \left\{ \eta_0(u) + \beta_0^T Z \right\} Z | X = u], \quad \text{and} \quad e_1 \text{is the unit vector with 1 in the first position.}
\]

Theorem 3: Under the conditions of Theorem 2, for the fully iterated estimator defined by (9) with \(\alpha = 1\), with \(\rho_2(\cdot) = \rho_2 \left\{ \eta_0(X) + \beta_0^T Z \right\} \),

\[
n^{1/2}(\hat{\beta} - \beta_0) \xrightarrow{D} N(0, B_2^{-1}),
\]

provided that \(\beta\) is maximized in a consistent neighborhood of \(\beta_0\). Here,

\[
B_2 = E \left\{ ZZ^T \rho_2(\cdot) \right\} - E \left[\frac{E \left\{ Z \rho_2(\cdot) | X \right\} E \left\{ Z^T \rho_2(\cdot) | X \right\} }{E \left\{ \rho_2(\cdot) | X \right\}} \right].
\]

The same result holds for the estimator defined by (9) under the weaker condition that \(nh^6 \to 0\).

Remark 3: Theorem 2, which concerns the one-step estimator, has an important restriction on the bandwidth \(h\), which precludes the nearly universally familiar optimal bandwidth rates for nonparametric regression, in which \(h\) is proportional to \(n^{-1/5}\). Basically, our conditions require that in order to estimate \((\alpha_0, \beta_0)\) at the rate \(n^{-1/2}\), one must undersmooth the nonparametric part \(\eta_0(\cdot)\). The need to undersmooth to obtain usual rates of convergence is standard in the kernel
literature and has analogues in the spline literature (Hastie and Tibshirani, 1990, pp. 154–155). This undersmoothing is required for the estimator defined by (9). However, for the estimator defined by (10), in the linear regression single-index model with no Z, ordinary bandwidth rates are permissible as shown by Härdle, Hall and Ichimura (1993), who suggest that one maximize (10) simultaneously in the bandwidth and the parameters. Severini and Staniswalis (1994) and Hunsberger (1994) (see also Severini and Wong, 1992) show the same thing for the partially linear model. Since ordinary bandwidths “work” for single-index models and also for partially linear models, it is reasonable to suppose that they work for the combination, namely our GPLSIM’s. A brief sketch of an argument is provided in an appendix of an earlier version of this paper (Carroll et al. 1995) verifying that ordinary bandwidth rates are possible for full GPLSIM when (10) is maximized.

Remark 4: In the normal model with identity link function, an interesting simplification occurs. We set $E(Z) = 0$ without loss of generality and define $q(X) = E(Z|X)$. Then $B_2 = \sigma^{-2}E\{\text{var}(Z|X)\}$, while the asymptotic variance (19) for the one-step estimator is

$$\sigma^2[\{EZZ^T\}^{-1} + E\{q(X)\}^{-1} \{1 - \{q(X)\}^{-1} \{EZZ^T\}^{-1}q(X)\}^{-1}].$$

Since $B_2^{-1} = \sigma^2\{EZZ^T - q(X)q(X)^T\}^{-1}$, one can easily see that the fully iterated estimator is uniformly as or more efficient than the one-step estimator. However, when X and Z are independent, the one-step estimator is as efficient as the fully iterated estimator. Hence, the one-step estimator is preferable when X and Z are weakly correlated, since it requires no iteration.

5.2 The Multivariate X Case: General Model

For a given $\tilde{\eta}$, let $\tilde{\alpha}$ and $\tilde{\beta}$ maximize the global quasilikelihood (9). We will assume that $\tilde{\alpha}, \tilde{\beta}$ are in a \sqrt{n}-neighborhood of respectively α_0 and β_0, i.e. $\tilde{\alpha} - \alpha_0 = O_P(n^{-1/2})$ and $\tilde{\beta} - \beta_0 = O_P(n^{-1/2})$. Denote by A^- a generalized inverse of a square matrix A.

Theorem 4: Under the Conditions 1 and 2, the assumptions above and the restrictions on the
bandwidths as stated in Theorem 3, for the estimators defined by (9) and (10), estimator,
\[n^{1/2} \left(\frac{\hat{\alpha} - \alpha_0}{\hat{\beta} - \beta_0} \right) \xrightarrow{D} \text{Normal} (0, Q^-), \] (21)
where, if \(\rho_2(\cdot) = \rho_2 \{ \eta_0(\alpha_0^T X) + \beta_0^T Z \}, \)
\[Q = E \left[\rho_2(\cdot) \left\{ \frac{X \eta_0(U)}{Z} \right\} \left\{ \frac{X \eta_0(U)}{Z} \right\}^T \right] - E \left(\rho_2(\cdot) \left\{ \frac{X \eta_0(U)}{Z} \right\} \right) \left[E \left\{ \frac{X \eta_0(U) \rho_2(\cdot)|U}{E \{ \rho_2(\cdot)|U \}} \right\} / E \{ \rho_2(\cdot)|U \} \right]^T. \]

Remark 5: When \(\sigma^2 V(\mu) = \sigma^2 \), with identity link, and when there is no \(\beta \)-component, Theorem 4 reduces to the result of Härdle, Hall and Ichimura (1993) for the single-index model.

Remark 6: Consult Remark 3 after Theorem 3 for discussion of the bandwidth conditions.

6 ASYMPTOTIC EFFICIENCY IN THE SEMIPARAMETRIC SENSE

In this section, we will derive the information bound for the semiparametric model (3) and (5). This information bound turns out to be the matrix \(Q \) given in Theorem 4. Thus, the estimator from Theorem 4 achieves the information lower bound and is efficient in the semiparametric sense.

To state the information bound, let us define the parameter space. Assume that \(\eta_0 \) is a completely unknown function with a continuous second derivative and that the joint density of \(X \) and \(Z \) with respect to some measure exists and is completely unknown.

Theorem 5: Under the above assumptions, the information matrix for the semiparametric model (3) and (5) is \(Q \) given in Theorem 4.

7 INFERENCE AND STANDARD ERRORS

A consistent estimate of \(\sigma^2 \) is the weighted mean squared error of the residuals \(Y_i \) against their predicted mean, with weights \(1/V \{ \hat{\mu}(X_i, Z_i) \} \); one can use \(n - \ell_n - p - q \) degrees of freedom, where \(\ell_n \) is the effective number of parameters used in estimating \(\eta_0(\cdot) \). The rest of this section discusses estimating the other variance terms.
7.1 Estimation in Partially Linear Models: Scalar X

When X is scalar, so that \(\alpha_0 = 1 \) is known, each of the terms in the limiting covariance matrices (19) and (20) can be estimated by nonparametric regression techniques. We focus on (20) for which this fairly tedious process can be replaced by a simple consistent alternative based upon the usual expansions for quasilikelihood. The derivations are based upon the simple form (9), instead of taking derivatives in (10), since these are more complex to compute.

Set \(U_i = \alpha_0^T X_i = X_i, \tilde{Z} = (Z_1, ..., Z_n)^T \) and \(\tilde{A} \) be diagonal with elements \(\rho_{2i} \), where \(\rho_{2i} \equiv \rho_2 \left\{ \eta(U_i) + \beta^T Z_i \right\} \). Further, set \(\tilde{\eta} = \{ \eta(U_1), \ldots, \eta(U_n) \}^T \) and \(\tilde{e} \) to be the vector with \(i \)-th element \(\eta(U_i) + \beta^T Z_i + (Y_i - \mu_i)/\sigma^2 V_i \rho_{2i} \), where \(\mu_i = g^{-1} \left\{ \eta(U_i) + \beta^T Z_i \right\} \) and \(V_i = V(\mu_i) \). The smoothing matrix is the \(n \times n \) matrix

\[
\tilde{S} = \begin{bmatrix}
\mathbf{e}_1^T \{ \mathbf{U}(U_1)^T \tilde{A} \mathbf{K}(U_1) \mathbf{U}(U_1) \}^{-1} \mathbf{U}(U_1)^T \tilde{A} \mathbf{K}(U_1) \\
\vdots \\
\mathbf{e}_n^T \{ \mathbf{U}(U_n)^T \tilde{A} \mathbf{K}(U_n) \mathbf{U}(U_n) \}^{-1} \mathbf{U}(U_n)^T \tilde{A} \mathbf{K}(U_n)
\end{bmatrix}, \tag{22}
\]

where \(\mathbf{U}(u_0) \) is the \(n \times 2 \) matrix with first column all 1’s and second column the terms \((U_i - u_0)/h \), and \(\mathbf{K}(u_0) \) is diagonal with elements \(K_h(U_i - u_0) \).

Here is the motivation for \(\tilde{S} \). For fixed \(\beta \) and \(u_0 \), note that the intercept \(a(u_0) \) and \(h \) times the slope \(b(u_0) \) from the local quasilikelihood regression are the iterative solutions to the equations

\[
\begin{bmatrix}
a(u_0) \\
hb(u_0)
\end{bmatrix} = \left\{ \sum_{k=1}^n \mathbf{U}_k(u_0) \mathbf{U}_k(u_0)^T K_h(U_k - u_0) A_k(u_0) \right\}^{-1} \times \sum_{k=1}^n \mathbf{U}_k(u_0) K_h(U_k - u_0) A_k(u_0) \left\{ a(u_0) + b(u_0)(U_i - u_0) + (Y_i - \mu_i)/\left(\sigma^2 V_i \rho_{2i} \right) \right\}, \tag{23}
\]

where \(\mathbf{U}_k(u_0) = \{1, (U_k - u_0)/h \}^T \) and \(A_k(u_0) = \rho_2 \left\{ \eta(u_0) + \beta^T Z_k \right\} \). Setting \(u_0 = U_i \) for \(i = 1, \ldots, n \) and multiplying both sides of (23) by \(\mathbf{e}_i^T \) yields (22).

The following argument has similarities with equation (6.22) of Hastie and Tibshirani (1990, p. 154). Because of the local nature of the fit, the term \(b(u_0)(U_i - u_0) \) in the last part of (23) can be ignored asymptotically. This means that the local quasilikelihood algorithm is asymptotically
equivalent to solving in β and η the equations

$$\beta = \left(\hat{Z}^T \hat{A} \hat{Z}\right)^{-1} \hat{Z}^T \hat{A} \left(\hat{\epsilon} - \hat{\eta}\right); \quad \hat{\eta} = \hat{S} \left(\hat{\epsilon} - \hat{Z}\beta\right),$$

This means that the estimate of β_0 is asymptotically equivalent to solving $\beta = \hat{H}_1 \hat{\epsilon}$, where

$$\hat{H}_1 = \left\{\hat{Z}^T \hat{A} (I - \hat{S}) \hat{Z}\right\}^{-1} \hat{Z}^T \hat{A} (I - \hat{S}).$$

Since $\hat{\epsilon}$ has covariance matrix \hat{A}^{-1}, an approximate covariance matrix for $\hat{\beta}$ is $\hat{H}_1 \hat{A}^{-1} \hat{H}_1^T$. One can show that this estimate yields asymptotically consistent standard errors for $\hat{\beta}$.

7.2 Estimation in General Models: Multivariate X

When α_0 is unknown, there are again two strategies: nonparametric regression techniques can be used to estimate the terms in (21), or we can again develop directly a consistent estimate of (21).

We build upon the notation in Section 7.1.

Let \hat{Q} be the $n \times p$ matrix with ith row given as $\eta(U_i)X_i^T$, and let $\hat{R} = (\hat{Q}, \hat{Z})$. Let

$$P_{\alpha}^* = \begin{bmatrix} I - \alpha \alpha^T & 0 \\ 0 & I \end{bmatrix}$$

and let $\hat{\epsilon}$ to be the vector with ith element $\eta(U_i) + \eta(U_i)(\alpha^T X_i) + (\beta^T Z_i) + (Y_i - \mu_i) / \{\sigma^2 V_i \rho_{i1}\}$.

Remembering that we must have $\|\alpha\| = 1$ for identifiability, note that we find (α, β) by solving

$$0 = \hat{R}^T \hat{\alpha} (\hat{\epsilon} - \hat{\eta}) - \hat{\beta}^T \hat{\alpha} \hat{R} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} + \begin{pmatrix} \theta \alpha \\ 0 \end{pmatrix}$$

where θ is a Lagrange multiplier associated with the constraint $\alpha^T \alpha = 1$. Of course, the same argument in deleting a term explained following (23) is used here. Multiplying both sides by P_{α}^* and solving, we find that $(\alpha^T, \beta^T)^T = \begin{pmatrix} P_{\alpha}^* \hat{R}^T \hat{\alpha} \hat{R} \\ P_{\alpha}^* \hat{R}^T \hat{\alpha} \end{pmatrix}^{-1} P_{\alpha}^* \hat{R}^T \hat{\alpha} \hat{\epsilon} - \hat{\eta}$. Remembering that

$$\hat{\eta} = \hat{S} \hat{\epsilon} - \hat{Q} \alpha - \hat{Z} \beta,$$

we find after some algebra that $(\alpha^T, \beta^T)^T = \hat{H}_2 \hat{\epsilon}$ and

$$\hat{H}_2 = \left\{P_{\alpha}^* \hat{R}^T \hat{\alpha} (I - \hat{S}) \hat{R}\right\}^{-1} P_{\alpha}^* \hat{R}^T \hat{\alpha} (I - \hat{S}).$$

The estimated (and consistent) covariance matrix is $\hat{H}_2 \hat{A}^{-1} \hat{H}_2^T$.

18
8 IMPLEMENTATION

To cut down on the computational labor at the curve estimation stages fast binned approximations are used (e.g. Härdle and Scott 1992, Fan and Marron 1994). Binning methods can also be used for fast computation of the standard error estimates. Details of such calculations are given in Turlach and Wand (1995). An S-PLUS/Fortran module for fitting GPLSIM in certain special cases is available from the World Wide Web site http://www.agsm.unsw.edu.au/wand/software.html.

9 DISCUSSION

Model (5) does not explicitly deal with interactions between X and Z, for example of the form

$$g\{\mu(x,z)\} = \eta_{z1}(\alpha_0^T x) + \beta_0^T z_2,$$

(24)

where $z = (z_1, z_2)$ with z_1 binary. However, our methods can be modified to handle (24). The local quasilikelihood (8) should be replaced by

$$\sum_{i=1}^{n} Q \left[g^{-1} \left\{ a_0 + b_0(\alpha^T X_i - u) + \beta^T Z_{2,i} \right\}, Y_i \right] K_{h_0}(\alpha^T X_i - u) I(Z_{1,i} = 0)$$

$$+ \sum_{i=1}^{n} Q \left[g^{-1} \left\{ a_1 + b_1(\alpha^T X_i - u) + \beta^T Z_{2,i} \right\}, Y_i \right] K_{h_1}(\alpha^T X_i - u) I(Z_{1,i} = 1),$$

where h_0 and h_1 are bandwidths for η_0 and η_1, respectively. The estimators for η_0 and η_1 are respectively $\tilde{\eta}_0(u) = \tilde{a}_0$ and $\tilde{\eta}_1(u) = \tilde{a}_1$. One can modify the global quasilikelihood analogously.

Model (5) also allows modeling interactions of the form

$$g\{\mu(x,z)\} = \eta_0 \{ \alpha_0^T x + (x^T, z^T) \Lambda (x^T, z^T)^T \} + \beta_0^T z$$

where Λ is the parameter matrix for interactions. This model is included in (5) by forming a new and longer X-vector. One can also incorporate partial interaction terms in (5), which would reduce the number of effective parameters.

REFERENCES

Society, Series B, 50, 413–436.

10 APPENDIX

We outline the key ideas for proving Theorems 1, 2, 4 and 5. Details can be found in an earlier draft of this paper (Carroll et al. 1995). The methods of proof for Theorem 3 are similar.

10.1 Conditions

For simplicity of notation, in this appendix we will absorb σ^2 into $V(\cdot)$, so that the variance of Y given (Z, X) is $V \{\mu(Z, X)\}$. Denote $q_\ell(x, y) = (\partial^\ell / \partial x^\ell)Q \{g^{-1}(x), y\}, \ell = 1, 2, 3$. Then

$$q_1(x, y) = \left\{y - g^{-1}(x)\right\} \rho_1(x) \quad \text{and} \quad q_2(x, y) = \left\{y - g^{-1}(x)\right\} \rho_1'(x) - \rho_2(x),$$

(25)

where $\rho_\ell(t) = \left\{\frac{dg^{-1}(t)}{dt}\right\}^\ell / V \{g^{-1}(t)\}$ is introduced in Section 4.2. In Condition 1, u is a generic argument for Theorem 1, and the condition must hold uniformly in u for Theorems 2–4.

Condition 1:

(i) the function $q_2(x, y) < 0$ for $x \in \mathbb{R}$ and y in the range of the response variable,

(ii) the marginal density of $\alpha_0^T X$ is positive and continuous at the point u,

(iii) the function $\eta_0''(\cdot)$ is continuous at the point u,

22
(iv) \(g''(\cdot) \) and \(V(\cdot) \) are continuous functions,

(v) With \(R = \eta_0(\alpha_0^T X) + \beta_0^T Z, E \{ q_1^2(R,Y) | U = t \}, E \{ q_1^2(R,Y) Z | U = t \} \) and \(E \{ q_1^2(R,Y) Z Z^T | U = t \} \) are continuous in \(t \) at the point \(u \). Moreover, \(E \left[q_1^2 \left(\eta_0(\alpha_0^T X) + \beta_0^T Z, Y \right) \right] < \infty \) and
\[
E \left[q_1^{2+\delta} \left(\eta_0(\alpha_0^T X) + \beta_0^T Z, Y \right) \right] < \infty, \text{ for some } \delta > 2.
\]

(vi) the kernel \(K \) is a symmetric density function with bounded support,

(vii) the random vector \(Z \) is assumed to have a bounded support,

Condition 2:

(i) the marginal density of \(\alpha^T X \) is positive and uniformly continuous for \(\alpha \) in a neighborhood of \(\alpha_0 \). Further, \(\alpha_0^T X \) has a positive density on its support \(D \).

(ii) the function \(\eta_0''(\cdot) \) is continuous in \(u \in D \),

(iii) the density function of \(X \) has a continuous second derivative,

(iv) the functions \(V''(\cdot) \) and \(g''(\cdot) \) are continuous,

(v) With \(R = \eta_0(\alpha_0^T X) + \beta_0^T Z, E \{ q_1^2(R,Y) | X = u \}, E \{ q_1^2(\eta_0(R,Y) Z | X = u \} \) and \(E \{ q_1^2(R,Y) Z Z^T | X = u \} \)

are twice differentiable in \(u \in D \),

10.2 Proof of Theorem 1

Let \(c_n = (nh)^{-1/2}, U_i = \alpha_0^T X_i, \)

\[
X_i^* = \begin{pmatrix} 1 \hline (U_i - u)/h \hline Z_i \end{pmatrix}, \quad \beta^* = c_n^{-1} \{ \hat{a} - \eta_0(u) \} \hline c_n^{-1} h \{ \hat{b} - \eta_0(u) \} \hline c_n^{-1} (\hat{\beta} - \beta_0) \end{pmatrix},
\]

and let \(f(\cdot) \) denote the density function of \(U_i = \alpha_0^T X_i \). Denote further \(\hat{\eta}_i = \hat{\eta}_i(u) = \eta_0(u) + \beta_0^T Z_i + \eta_0'(u)(U_i - u) \). If \((\hat{a}, \hat{b}, \hat{\beta})^T \) maximizes (11) then \(\hat{\beta}^* \) maximizes
\[
\ell_n(\beta^*) = h \sum_{i=1}^{n} \left[Q \left\{ g^{-1}(c_n \beta^* X_i^* + \hat{\eta}_i), Y_i \right\} - Q \left\{ g^{-1}(\hat{\eta}_i), Y_i \right\} \right] K_h(U_i - u),
\]

23
with respect to \(\beta^* \). The concavity of the function \(\ell_n(\beta^*) \) is ensured by Condition 1 (i). By a Taylor expansion of the function \(Q(g^{-1}(\cdot), Y_i) \) we obtain that

\[
\ell_n(\beta^*) = W_n^T \beta^* + \frac{1}{2} \beta^* T A_n \beta^* \{1 + o_P(1)\}, \tag{26}
\]

\[
W_n = h c_n \sum_{i=1}^{n} q_1(\eta_i, Y_i) X_i^T K_h(U_i - u) \quad \text{and} \quad A_n = h c_n^2 \sum_{i=1}^{n} q_2(\eta_i, Y_i) X_i^T X_i^T K_h(U_i - u).
\]

Define

\[
A(Z) = \begin{pmatrix} 1 & 0 & Z^T \\ 0 & \kappa_2 & 0 \\ Z & 0 & ZZ^T \end{pmatrix} \quad \text{and} \quad B(Z) = \begin{pmatrix} \nu_0 & 0 & \nu_0 Z^T \\ 0 & \nu_2 & 0 \\ \nu_0 Z & 0 & \nu_0 ZZ^T \end{pmatrix}.
\]

It can be shown that \(A_n = -f(u)E \left[\rho_2(\eta_0(U) + \beta_0^T Z) A(Z) | U = u \right] + o_P(1) \equiv -A + o_P(1) \). Therefore, by (26),

\[
\ell_n(\beta^*) = W_n^T \beta^* - \frac{1}{2} \beta^* T A \beta^* + o_P(1). \tag{27}
\]

By applying the Convexity Lemma (see Pollard, 1991), we obtain that \(\hat{\beta}^* = A^{-1} W_n + o_P(1) \).

Hence the asymptotic normality of \(\hat{\beta}^* \) will follow from that of \(W_n \), which we will establish below.

By the definition of \(W_n \), it can be shown that

\[
EW_n = c_n^{-1} \frac{1}{2} \eta_0''(u) h^2 f(u) E \left[\rho_2 \left\{ \eta_0(U) + \beta_0^T Z \right\} (\kappa_2, 0, \kappa_2 Z^T)^T | U = u \right] + o(c_n^{-1} h^2) \tag{28}
\]

and that \(\text{var}(W_n) = f(u) E \left[\rho_2 \left\{ \eta_0(U) + \beta_0^T Z \right\} B(Z) | U = u \right] + o(1) \equiv B + o(1) \). Using Condition 1 (v), it can be shown that Liapounov’s condition is satisfied and hence \(\hat{\beta}^* \) is asymptotically normal.

This establishes Theorem 1.

10.3 Proof of Theorem 2

Lemma A.1: Let \(C \) and \(D \) be respectively compact sets in \(\mathbb{R}^d \) and \(\mathbb{R}^p \) and \(f(x, \theta) \) is a continuous function in \(\theta \in C \) and \(x \in D \). Assume that \(\hat{\theta}(x) \in C \) is continuous in \(x \in D \), and is the unique maximizer of \(f(x, \theta) \). Let \(\hat{\theta}_n(x) \in C \) be a maximizer of \(f_n(x, \theta) \). If

\[
\sup_{\theta \in C, x \in D} |f_n(x, \theta) - f(x, \theta)| \to 0, \quad \text{then}
\]

24
\[
\sup_{x \in D} |\hat{\theta}_n(x) - \bar{\theta}(x)| \to 0, \quad \text{as } n \to \infty.
\]

Proof of Theorem 2: First of all, we note that under Condition 2, by a result of Mack and Silverman (1982), (27) holds uniformly in \(u \in D \). By the Convexity Lemma, it also holds uniformly in \(\beta^* \in C \) and \(u \in D \) for any compact set \(C \). Lemma A.1 then yields

\[
\sup_{u \in D} \left| \hat{\beta}^*(u) - A^{-1}W_n(u) \right| \overset{P}{\to} 0,
\]

(29)

where \(\hat{\beta}^*(u) \) and \(W_n(u) \) are defined in the proof of Theorem 1 except that we here stress the dependence on \(u \). So, we have, by considering the first element of the vectors in (29),

\[
\sup_{u \in D} \left| \hat{\eta}(u) - \eta_0(u) - \frac{1}{nf(u)} \sum_{i=1}^{n} W_i K_h(X_i - u) \right| = o_P(c_n),
\]

where \(f(u) \) is the density of \(X_i \) and \(W_i \) is the first element of the vector \(q_1(\tilde{\eta}, Y_i) \Sigma^{-1}(u)(1, Z_i^T)^T \), with \(\tilde{\eta} = \tilde{\eta}_i(u) = \eta_0(u) + \beta_0^T Z_i + \eta'_0(U_i - u) \). Moreover, the following stronger result holds:

\[
\sup_{u \in D} \left| \hat{\eta}(u) - \eta_0(u) - \frac{1}{nf(u)} \sum_{i=1}^{n} W_i K_h(X_i - u) \right| = O_P \left\{ h^2 c_n + c_n^2 \log^{1/2}(1/h) \right\}.
\]

(30)

Let \(\hat{\theta} = n^{1/2}(\hat{\beta} - \beta_0) \), \(\hat{m}_i = \tilde{\eta}_i(X_i) + \beta_0^T Z_i \), and \(m_i = \eta_0(X_i) + \beta_0^T Z_i \). Then, \(\hat{\theta} \) maximizes

\[
\ell_n(\theta) = \sum_{i=1}^{n} \left[Q \left\{ g^{-1}(\hat{m}_i + n^{-1/2} \theta^T Z_i), Y_i \right\} - Q \left\{ g^{-1}(m_i), Y_i \right\} \right].
\]

(31)

By Taylor’s expansion, we have

\[
\ell_n(\theta) = n^{-1/2} \sum_{i=1}^{n} q_1(\hat{m}_i, Y_i) \theta_i^T Z_i + \frac{1}{2} \theta^T B_n \theta,
\]

(32)

\[
B_n = \frac{1}{n} \sum_{i=1}^{n} \left[Y_i \rho_1' \left\{ g^{-1}(\hat{m}_i + \xi_{ni}) \right\} - \rho_3 \left\{ g^{-1}(\hat{m}_i + \xi'_{ni}) \right\} \right] Z_i Z_i^T,
\]

with \(\xi_{ni} \) and \(\xi'_{ni} \) between 0 and \(n^{-1/2} \theta^T Z_i \), independent of \(Y_i \), and with \(\rho_3(x) = -g^{-1}(x) \rho_1'(x) - \rho_2(x) \). It can be shown that

\[
B_n = -E \rho_2 \left\{ \eta_0(X) + \beta_0^T Z \right\} ZZ^T + o_P(1) \equiv -B + o_P(1).
\]

(33)
Using similar arguments as for obtaining (33), we get
\[
n^{-1/2} \sum_{i=1}^{n} q_1(m_i, Y_i) Z_i = n^{-1/2} \sum_{i=1}^{n} q_1(m_i, Y_i) Z_i \\
+ n^{-1/2} \sum_{i=1}^{n} q_2(m_i, Y_i) \{ \hat{\eta}(X_i) - \eta_0(X_i) \} Z_i + O_P(n^{1/2} \| \hat{\eta} - \eta_0 \|_{\infty}).
\]

By (30), the second term in the above expression can be expressed as
\[
n^{-3/2} \sum_{i=1}^{n} q_2(m_i, Y_i) f(X_i)^{-1} \sum_{j=1}^{n} W_j K_h(X_j - X_i) Z_i + O_P \left\{ n^{1/2} c_n^2 \log^{1/2}(1/h) \right\} \\
\equiv T_{n1} + O_P \left\{ n^{1/2} c_n^2 \log^{1/2}(1/h) \right\}.
\]

Now define \(v_j = v(X_j, Y_j, Z_j) \) as the first element of \(q_1(m_j, Y_j) \Sigma^{-1}(1, Z_j^T)^T \). Using the definition of \(\hat{\eta}_j(X_i) \), we obtain \(\hat{\eta}_j(X_i) - m_j = O((X_j - X_i)^2) \) and therefore
\[
T_{n1} = n^{-3/2} \sum_{i=1}^{n} \sum_{j=1}^{n} q_2(m_i, Y_i) f(X_i)^{-1} v_j K_h(X_j - X_i) Z_i + O_P(n^{1/2} h^2) \\
\equiv T_{n2} + O_P(n^{1/2} h^2).
\]

It can be shown via calculating the second moment that
\[
T_{n2} - T_{n3} \xrightarrow{P} 0,
\]
where \(T_{n3} = -n^{-1/2} \sum_{j=1}^{n} \gamma(X_j) v_j \) with \(\gamma(u) = E \left[\rho_2 \left\{ \eta_0(u) + \beta_0^T Z \right\} | X = u \right] \). Combining (31)-(34) we obtain that \(\ell_n(\theta) = n^{-1/2} \sum_{i=1}^{n} \Omega(X_i, Y_i, Z_i) - \frac{1}{2} \theta^T \mathbf{B} \theta + o_P(1) \), where \(\Omega(X_i, Y_i, Z_i) = q_1(m_i, Y_i) Z_i - \gamma(X_i) v_i \). By the Convexity Lemma we find that \(\hat{\theta} = \mathbf{B}^{-1} n^{-1/2} \sum_{i=1}^{n} \Omega(X_i, Y_i, Z_i) + o_P(1) \), from which it follows that \(n^{1/2}(\hat{\theta} - \beta_0) \xrightarrow{D} N(0, \mathbf{B}^{-1} \Sigma \mathbf{B}^{-1}) \), as claimed.

10.4 Proof of Theorem 4

We use the notation \(U = \alpha_0^T X, \hat{U} = \hat{\alpha}^T X \) and \(f(\cdot) \) for the density function of \(U \). The proof relies on two steps, which we will state first and prove afterwards. The first step consists of an expansion for \(\hat{\eta} \) (at an argument \(u_0 \)). We will show that
\[
\hat{\eta}(u_0; h, \hat{\alpha}, \hat{\beta}) - \eta_0(u_0) = n^{-1} \sum_{i=1}^{n} K_h(U_i - u_0) \frac{\varepsilon_i}{f(u_0) E \{ \rho_2(\cdot) | U = u_0 \}} - \left(\hat{\beta}^T - \beta_0^T \right) \frac{E \{ \rho_2(\cdot) | U = u_0 \}}{E \{ \rho_2(\cdot) | U = u_0 \}} \\
- \left(\hat{\alpha}^T - \alpha_0^T \right) \frac{E \{ X \rho_2(\cdot) \eta_0(\cdot) | U = u_0 \}}{E \{ \rho_2(\cdot) | U = u_0 \}} + o_P(n^{-1/2}),
\]
(35)
where “.” denotes the argument \(\eta_0(U) + \beta_0^T Z \) and \(\varepsilon_i = \{Y_i - \mu(\cdot)\} \rho_1(\cdot) \) with a similar convention.

The second step is the following. Introduce the shorthand notations

\[
\Lambda_i = \begin{bmatrix} X_i \eta_0(U_i) \\ Z_i \end{bmatrix} \quad \text{and} \quad P_\alpha = \begin{bmatrix} I - \alpha_0 \alpha_0^T \\ 0 \end{bmatrix} + o_P(1).
\]

It will be shown that

\[
P_\alpha \Sigma_{n,1/2}^1 \left(\frac{\hat{\alpha} - \alpha_0}{\beta - \beta_0} \right) = n^{-1/2} \sum_{i=1}^n \varepsilon_i P_\alpha \left[\Xi_i - \frac{E\{\rho_2(\cdot)|U_i\}}{E\{\rho_2(\cdot)|U_i\}} \right] + o_P(1), \tag{36}
\]

Since \(\varepsilon_i \) has variance \(\rho_{2i} \), the right-hand side of (36) has the covariance matrix \(P_\alpha \Sigma P_\alpha \), verifying the statement of Theorem 4.

Proof of (35). Let \(a = \eta_0(u_0) \) and \(b = \eta(U_0) \). The local linear estimates solve

\[
0 = n^{-1} \sum_{i=1}^n \sum_{i=1}^n K_h(U_i - u_0) \left[\frac{1}{(U_i - u_0)/h} \{Y_i - \mu_u(\cdot)\} \right. \left. \rho_{1i}(\cdot) - B_{n1} \left(\frac{\hat{\alpha} - a}{h} - \left(\frac{\hat{\beta} - \beta_0}{h} \right) \right) \right] - \left(\frac{\hat{\beta} - \beta_0}{h} \right) B_{n2} + o_P(n^{-1/2}) + O_P(h^2),
\]

where \(\mu_u(\cdot) = \mu \left\{ a + b(U_i - u_0)/h + \beta^T Z_i \right\} \) and \(\rho_{1i}(\cdot) \) is defined similarly. Here \(B_{n,j} \) (j = 1, 2, 3) are the resulting sample matrices of kernel form. Solving the above linearized equation and substituting \(B_{n,j} \) by their asymptotic counterparts, we obtain (35).

Proof of (36). Recall that (9) and (10) lead to asymptotically equivalent estimates. Consider (9) and use the expansion

\[
\tilde{\eta}(\alpha^T X_i; \hat{\alpha}, \hat{\beta}) - \eta_0(\alpha_0^T X_i) = \tilde{\eta}(\alpha^T X_i; \alpha, \beta) - \tilde{\eta}(\alpha_0^T X_i; \alpha, \beta) + \tilde{\eta}(\alpha_0^T X_i; \hat{\alpha}, \hat{\beta} - \eta_0(\alpha_0^T X_i)
\]

\[
= \tilde{\eta}(\alpha_0^T X_i; \hat{\alpha}, \hat{\beta})(\alpha^T - \alpha_0^T)X_i + \tilde{\eta}(\alpha_0^T X_i; \hat{\alpha}, \hat{\beta}) - \eta_0(\alpha_0^T X_i) + o_P(n^{-1/2})
\]

\[
= \eta_0(\alpha_0^T X_i)(\alpha^T - \alpha_0^T)X_i + \tilde{\eta}(\alpha_0^T X_i; \hat{\alpha}, \hat{\beta}) - \eta_0(\alpha_0^T X_i) + o_P(n^{-1/2}), \tag{37}
\]
where we dropped the dependence on \(h \) for notational simplicity. The second term is handled by (35). With \(\theta \) being the Lagrange multiplier, we know that \((\hat{\alpha}, \hat{\beta})\) is the solution to

\[
0 = \theta \left(\frac{\hat{\alpha}}{0} \right) + n^{-1/2} \sum_{i=1}^{n} \left[X_i \hat{\eta}(\hat{\alpha}^T X_i, \hat{\alpha}, \hat{\beta}) \right] Y_i - \mu \left\{ \hat{\eta}(\hat{\alpha}^T X_i, \hat{\alpha}, \hat{\beta}) + \hat{\beta}^T Z_i \right\} \rho_1 \left\{ \hat{\eta}(\hat{\alpha}^T X_i, \hat{\alpha}, \hat{\beta}) + \hat{\beta}^T Z_i \right\}.
\]

We can expand \(\hat{\eta}(\cdot) \) about \(\eta_0(\cdot) \) using (35). Write \(\mu_i = \mu \left\{ \eta_0(U_i) + \beta^T Z_i \right\} \) and similarly for \(\rho_{ji} \).

Make the further definition

\[
A_{\alpha, \beta} = E \left[\rho_2(\cdot) \left\{ \frac{X \eta_0(\cdot)}{Z} \right\} \left\{ \frac{X \eta_0(\cdot)}{Z} \right\}^T \right].
\]

By the Taylor series, and using (37), we have that (using that \(nh^4 \to 0 \))

\[
0 = \theta \left(\frac{\hat{\alpha}}{0} \right) + n^{-1/2} \sum_{i=1}^{n} \Lambda_i \epsilon_i - n^{-1/2} \sum_{i=1}^{n} \Lambda_i \left(\hat{\beta}^T - \beta_0^T \right) Z_i \rho_{2i}(\cdot)
\]

\[
- n^{-1/2} \sum_{i=1}^{n} \rho_{2i} \Lambda_i \left\{ \hat{\eta}(\hat{\alpha}^T X_i; \hat{\alpha}, \hat{\beta}) - \eta_0(\alpha_0^T X_i) \right\} + o_p(1)
\]

\[
= \theta \left(\frac{\hat{\alpha}}{0} \right) + n^{-1/2} \sum_{i=1}^{n} \Lambda_i \epsilon_i - A_{\alpha, \beta} n^{1/2} \left(\hat{\alpha} - \alpha_0 \right) - \hat{\beta} - \beta_0
\]

\[
- n^{-1/2} \sum_{i=1}^{n} \rho_{2i} \Lambda_i \left\{ \hat{\eta}(\alpha_0^T X_i; \hat{\alpha}, \hat{\beta}) - \eta_0(\alpha_0^T X_i) \right\} + o_p(1).
\]

We now invoke (35), which implies that

\[
0 = \theta \left(\frac{\hat{\alpha}}{0} \right) + n^{-1/2} \sum_{i=1}^{n} \Lambda_i \epsilon_i - Q n^{1/2} \left(\frac{\hat{\alpha} - \alpha_0}{\hat{\beta} - \beta_0} \right)
\]

\[
- n^{-1/2} \sum_{i=1}^{n} \rho_{2i} n^{-1} \sum_{j=1}^{n} K_h(U_j - U_i) \frac{Y_j - \mu \left\{ \eta_0(U_i) + \beta_0^T Z_j \right\}}{f(U_i) \rho_2(\cdot) \left\{ \eta_0(U_i) + \beta_0^T Z_j \right\}} \rho_1 \left\{ \eta_0(U_i) + \beta_0^T Z_j \right\}.
\]

Only the last term is of interest, and we hence focus on it. Interchanging the summations we get

\[
n^{-1/2} \sum_{i=1}^{n} \left[n^{-1} \sum_{j=1}^{n} \Lambda_j \rho_{2j} K_h(U_j - U_i) \frac{Y_j - \mu \left\{ \eta_0(U_j) + \beta_0^T Z_j \right\}}{f(U_j) \rho_2(\cdot) \left\{ \eta_0(U_j) + \beta_0^T Z_j \right\}} \rho_1 \left\{ \eta_0(U_j) + \beta_0^T Z_j \right\} \right].
\]

The term in the square brackets, being a nonparametric regression, is essentially the same as

\[
n^{-1/2} \sum_{i=1}^{n} \frac{E \left\{ \Lambda \rho_2(\cdot) \left| U_i \right. \right\}}{E \left\{ \rho_2(\cdot) \left| U_i \right. \right\}},
\]

for a symmetric kernel. Combining (38) and (39), and multiplying by \(P \alpha \), we obtain (36).
10.5 Proof of Theorem 5

Let \(h(x, z) \) be the joint density of \((X, Z)\). Then, under the semiparametric model (3) and (5), the joint density of \((X, Y, Z)\) is given by

\[
f(x, y, z) = \exp \left[y \theta(x, z) - B \{ \theta(x, z) \} + C(y) \right] h(x, z),
\]

where \(\theta(x, z) = g_0 \circ g^{-1} \{ \eta_0(\alpha_0^T x) + \beta_0^T z \} \) with \(|\alpha_0| = 1 \) and \(g_0 \) the canonical link function. Define

\[
P_1 = \{ \text{Model (40) with given } \eta_0(\cdot), \text{ and } h \} \\
P_2 = \{ \text{Model (40) with given } \alpha_0, \beta_0, \text{ and } h(\cdot) \} \\
P_3 = \{ \text{Model (40) with given } \alpha_0, \beta_0 \text{ and } \eta_0(\cdot) \}.
\]

Then, the score function for \(\alpha_0 \) and \(\beta_0 \) under the parametric model \(P_1 \) is given by

\[
\hat{\ell} = \{ Y - \mu(X, Z) \} g_1' \{ \eta_0(\alpha_0^T X) + \beta_0^T Z \} \left(\frac{\eta_0'(\alpha_0^T X)X}{Z} \right).
\]

where \(g_1 = g_0 \circ g^{-1} \). The tangent space (Bickel et al., 1993, p. 50) of the nonparametric model \(P_2 \) can be shown to be \(\hat{P}_2 = \{ [Y - \mu(X, Z)] g_1'(\cdot) a(\alpha_0^T X), \forall a \in L_2 \} \), and the tangent space of the nonparametric model \(P_3 \) is given by \(\hat{P}_3 = \{ b(X, Z) \in L_2 : E b(X, Z) = 0 \} \). Then, by Theorem 3.4.1 of Bickel et al. (1993), the efficient score function of \((\alpha_0, \beta_0)\) under model (40) is the projection of \(\hat{\ell} \) into the orthogonal complement of the linear space \(\hat{P}_2 + \hat{P}_3 \), namely, \(\hat{\ell}^* = \hat{\ell} - \Pi(\hat{\ell} | \hat{P}_2 + \hat{P}_3) \). The information matrix for \(\alpha_0 \) and \(\beta_0 \) is just \(E(\hat{\ell}^* (\hat{\ell}^*)^T) \), where \(\Pi(\hat{\ell} | \hat{P}_2 + \hat{P}_3) \) is the projection of \(\hat{\ell} \) into \(\hat{P}_2 + \hat{P}_3 \). Since \(\hat{P}_2 \perp \hat{P}_3 \) and \(\hat{\ell} \perp \hat{P}_3 \), the projection \(\Pi(\hat{\ell} | \hat{P}_2 + \hat{P}_3) = \Pi(\hat{\ell} | \hat{P}_2) \) is to find a vector function of form \((Y - \mu) g_1'(\cdot) a(\alpha_0^T X) \) such that \(E \| \hat{\ell} - (Y - \mu) g_1'(\cdot) a(\alpha_0^T X) \|^2 \) is minimized. By conditioning on \(\alpha_0^T X \), one can easily find that

\[
\Pi(\hat{\ell} | \hat{P}_2) = (Y - \mu) g_1'(\cdot) \left[\begin{array}{c} E \{ X \eta_0'(U) \rho_2(\cdot) | U \} / E \{ \rho_2(\cdot) | U \} \\ E \{ Z \rho_2(\cdot) | U \} / E \{ \rho_2(\cdot) | U \} \end{array} \right] ,
\]

where \(U = \alpha_0^T X \). Using this, it is now easy to verify that \(Q = E(\hat{\ell}^* (\hat{\ell}^*)^T) \).
<table>
<thead>
<tr>
<th></th>
<th>Ordinary least squares</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>X_1</td>
<td>X_2</td>
<td>X_3</td>
<td>Z</td>
<td>X_1</td>
<td>X_2</td>
<td>X_3</td>
<td>Z</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>est.</td>
<td></td>
<td>0.564</td>
<td>0.498</td>
<td>0.659</td>
<td>0.403</td>
<td>0.595</td>
<td>0.568</td>
<td>0.569</td>
<td>0.274</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>coeff.</td>
<td></td>
<td>0.361</td>
<td>0.368</td>
<td>0.298</td>
<td>0.069</td>
<td>0.013</td>
<td>0.013</td>
<td>0.013</td>
<td>0.026</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>std.</td>
<td></td>
<td>0.218</td>
<td>0.142</td>
<td>0.966</td>
<td>0.216</td>
<td>0.563</td>
<td>0.574</td>
<td>0.595</td>
<td>0.281</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>err.</td>
<td></td>
<td>0.766</td>
<td>0.781</td>
<td>0.207</td>
<td>0.054</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.022</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>est.</td>
<td></td>
<td>-0.126</td>
<td>-0.512</td>
<td>-0.85</td>
<td>0.263</td>
<td>0.581</td>
<td>0.58</td>
<td>0.571</td>
<td>0.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>coeff.</td>
<td></td>
<td>1.137</td>
<td>0.97</td>
<td>0.596</td>
<td>0.059</td>
<td>0.011</td>
<td>0.011</td>
<td>0.01</td>
<td>0.023</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>std.</td>
<td></td>
<td>0.851</td>
<td>-0.264</td>
<td>-0.453</td>
<td>0.351</td>
<td>0.565</td>
<td>0.599</td>
<td>0.568</td>
<td>0.307</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>err.</td>
<td></td>
<td>0.796</td>
<td>1.364</td>
<td>1.349</td>
<td>0.068</td>
<td>0.012</td>
<td>0.013</td>
<td>0.013</td>
<td>0.023</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>est.</td>
<td></td>
<td>-0.881</td>
<td>0.396</td>
<td>-0.261</td>
<td>0.323</td>
<td>0.592</td>
<td>0.569</td>
<td>0.571</td>
<td>0.291</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>coeff.</td>
<td></td>
<td>0.697</td>
<td>1.309</td>
<td>1.496</td>
<td>0.064</td>
<td>0.011</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>std.</td>
<td></td>
</tr>
<tr>
<td>err.</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Results from 5 randomly chosen samples from sine-bump simulation study
Figure 1: Curve estimates for a single replication of the sine-bump simulation study. The data are shown by open circles for $Z = 0$ and closed circles for $Z = 1$. The solid curves correspond to the estimates of the underlying mean function when $Z = 0$ and $Z = 1$, respectively. The dashed curves are the true mean functions. The dotted curve is the kernel weight used in the local fitting process.
Table 2: Framingham Heart Study. “trblood” is transformed systolic blood pressure, “logchol” is the log of serum cholesterol and “smoker” is smoking status. The ordinary logistic coefficients for age, trblood and logchol have been normalized to have Euclidean norm equal to 1.0, and the standard errors have been adjusted appropriately.
Figure 2: Curve estimates for the Framingham Heart Study data. (a) Solid curves correspond to estimates of \(\text{logit}(P(\text{heart disease})) \) for smokers (upper curve) and non-smokers (lower curve) against the estimated single-index described in the text. The dotted curve is the kernel weight used in the local linear fitting process. (b) Estimates of \(P(\text{heart disease}) \) for smokers (upper curve) and non-smokers (lower curve) against the single index described in the text.
Table 3: Munich Dust Study. “trdust” is transformed dust concentration, “duration” is the duration of exposure and “smoker” is smoking status. The ordinary logistic coefficients for trdust and duration have been normalized to have Euclidean norm equal to 1.0, and the standard errors have been adjusted appropriately.

<table>
<thead>
<tr>
<th></th>
<th>trdust</th>
<th>duration</th>
<th>smoker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordinary logistic</td>
<td>0.403</td>
<td>0.915</td>
<td>0.68</td>
</tr>
<tr>
<td>std. err.</td>
<td>0.103</td>
<td>0.045</td>
<td>0.176</td>
</tr>
<tr>
<td>GPLSIM</td>
<td>0.222</td>
<td>0.975</td>
<td>0.668</td>
</tr>
<tr>
<td>std. err.</td>
<td>0.089</td>
<td>0.021</td>
<td>0.178</td>
</tr>
</tbody>
</table>
Figure 3: Curve estimates for the Munich Dust Study data. (a) Solid curves correspond to estimates of logit\(\text{pr}(\text{Bronchitis}) \) for smokers (upper curve) and non-smokers (lower curve) against the estimated single-index described in the text. The dotted curve is the kernel weight used in the local linear fitting process. (b) Estimates of \(\text{pr}(\text{Bronchitis}) \) for smokers (upper curve) and non-smokers (lower curve) against the single index described in the text.