Developing high-throughput methods for structural analyses of macromolecular assemblies in cells, as imaged by electron tomography

Jae Hoon Jung
The Department of Biology
A 2-dimensional Electron Microscope Image showing various subcellular structures
Active Zone at a Frog’s Neuromuscular Junction
Lack of 3-dimensional structural information in 2D electron microscope images
Electron Tomography

Detailed 3-dimensional structural information can be provided by electron tomography.
EM3D, a free electron tomography software package
Serial Virtual Slices at an Active Zone at a Frog’s Neuromuscular Junction
Segmentation and Surface Model generation of a structure of interest
A Movie of Segmentation and Surface Model generation of a structure of interest
A Movie of High-resolution Surface Models of Structures at the Active Zone
An Organization of the entire Active Zone Material at the Active Zone
An Organization of the Internal Structure inside a Synaptic Vesicle
Linkage of the Internal Structure inside a Synaptic Vesicle with the Active Zone Material

Organization of the Active Zone Material and Orientation of the Docked Synaptic Vesicles at the Active Zone

The findings based on our structural studies had required huge amount of time and effort from many colleagues (>10 years).

Jack McMahan
Jae Hoon Jung
Mark Harlow
David Ress
Joseph Szule
Jing Xu
Francisco F. de Miguel
Cornelia Stoschek
Mira Raman
David Yip

The procedure of structural analysis needs to be streamlined to handle increasingly growing large amount of volume data.
A Surface Model of Manually and Finely Segmented Internal Structure of a Synaptic Vesicle (>Weeks)

Segmentation and surface model rendering require marked improvement to handle large volume data.
A Surface Model of Manually and Grossly Segmented Internal Structure of a Synaptic Vesicle (<hours>

IDL TIFF file

Gross segmentation and surface model generation are fast but noisy.
Automatically Refined Internal Structure of a Synaptic Vesicle after Gross Segmentation (~minutes)

Automatic refinement of a gross segmented surface model is fast and decreases the noise level.
Automatic refinement of a grossly segmented structure enhances the efficiency of the processes of segmentation and surface model generation (>~100 fold)

Generally applicable to any structure in cells and materials for efficient structural analysis